Tyramine receptor (SER-2) isoforms are involved in the regulation of pharyngeal pumping and foraging behavior in Caenorhabditis elegans.

Department of Biological Sciences, University of Toledo, Toledo, Ohio3606-3390, USA.
Journal of Neurochemistry (Impact Factor: 3.97). 01/2005; 91(5):1104-15. DOI: 10.1111/j.1471-4159.2004.02787.x
Source: PubMed

ABSTRACT Octopamine regulates essential processes in nematodes; however, little is known about the physiological role of its precursor, tyramine. In the present study, we have characterized alternatively spliced Caenorhabditis elegans tyramine receptor isoforms (SER-2 and SER-2A) that differ by 23 amino acids within the mid-region of the third intracellular loop. Membranes prepared from cells expressing either SER-2 or SER-2A bind [3H]lysergic acid diethylamide (LSD) in the low nanomolar range and exhibit highest affinity for tyramine. Similarly, both isoforms exhibit nearly identical Ki values for a number of antagonists. In contrast, SER-2A exhibits a significantly lower affinity than SER-2 for other physiologically relevant biogenic amines, including octopamine. Pertussis toxin treatment reduces affinity for both tyramine and octopamine, especially for octopamine in membranes from cells expressing SER-2, suggesting that the conformation of the mid-region of the third intracellular loop is dictated by G-protein interactions and is responsible for the differential tyramine/octopamine affinities of the two isoforms. Tyramine reduces forskolin-stimulated cAMP levels in HEK293 cells expressing either isoform with nearly identical IC50 values. Tyramine, but not octopamine, also elevates Ca2+ levels in cells expressing SER-2 and to a lesser extent SER-2A. Most importantly, ser-2 null mutants (pk1357) fail to suppress head movements while reversing in response to nose-touch, suggesting a role for SER-2 in the regulation of foraging behavior, and fail to respond to tyramine in assays measuring serotonin-dependent pharyngeal pumping. These are the first reported functions for SER-2. These results suggest that C. elegans contains tyramine receptors, that individual SER-2 isoforms may differ significantly in their sensitivity to other physiologically relevant biogenic amines, such as octopamine (OA), and that tyraminergic signaling may be important in the regulation of key processes in nematodes.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This paper investigates the effect of epinastine, a selective octopamine antagonist in invertebrates, in Caenorhabditis elegans. Specifically, its ability to block the inhibitory action of octopamine on C. elegans-isolated pharynx was assayed. Isolated pharynxes were stimulated to pump by the addition of 500 nM 5-hydroxytryptamine (5-HT) (113 ± 2 per 30 s, n = 15). Octopamine inhibited the 5-HT-induced pumping in a concentration-dependent manner (threshold 1-5 μM) with a 61 ± 11% inhibition with 50 μM (n = 5). Epinastine (0.1 μM) antagonized the inhibitory response to octopamine (P < 0.001; n = 15). Tyramine also inhibited pharyngeal pumping induced by 5-HT but was less potent than octopamine. Tyramine, 50 μM to 1 mM, gave a transient inhibition e.g. of 40 ± 5% at 50 μM (n = 5). A higher (10 μM) concentration of epinastine was required to block the tryamine response compared with octopamine. It is concluded that epinastine selectively antagonizes the effect of octopamine on C. elegans pharynx. Further studies are required to test its selectivity for octopamine in other tissues and other nematodes.
    Invertebrate Neuroscience 10/2010; 10(1):47-52. · 1.13 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Biogenic amines modulate key behaviors in both vertebrates and invertebrates. In Caenorhabditis elegans, tyramine (TA) and octopamine (OA) inhibit aversive responses to 100%, but not dilute (30%) octanol. TA and OA also abolish food- and serotonin-dependent increases in responses to dilute octanol in wild-type but not tyra-3(ok325) and f14d12.6(ok371) null animals, respectively, suggesting that TA and OA modulated responses to dilute octanol are mediated by separate, previously uncharacterized, G-protein-coupled receptors. TA and OA are high-affinity ligands for TYRA-3 and F14D12.6, respectively, based on their pharmacological characterization after heterologous expression. f14d12.6::gfp is expressed in the ASHs, the neurons responsible for sensitivity to dilute octanol, and the sra-6-dependent expression of F14D12.6 in the ASHs is sufficient to rescue OA sensitivity in f14d12.6(ok371) null animals. In contrast, tyra-3::gfp appears not to be expressed in the ASHs, but instead in other neurons, including the dopaminergic CEP/ADEs. However, although dopamine (DA) also inhibits 5-HT-dependent responses to dilute octanol, TA still inhibits in dop-2; dop-1; dop-3 animals that do not respond to DA and cat-2(tm346) and Pdat-1::ICE animals that lack significant dopaminergic signaling, suggesting that DA is not an intermediate in TA inhibition. Finally, responses to TA and OA selectively desensitize after preexposure to the amines. Our data suggest that although tyraminergic and octopaminergic signaling yield identical phenotypes in these olfactory assays, they act independently through distinct receptors to modulate the ASH-mediated locomotory circuit and that C. elegans is a useful model to study the aminergic modulation of sensory-mediated locomotory behaviors.
    Journal of Neuroscience 01/2008; 27(49):13402-12. · 6.91 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: An ideal model organism should generally have three essential characteristics: successful sexual crosses should be easy to perform; a fully sequenced genome should be available; and it should be easy to induce reliable and reproducible DNA mutations [1]. The nematode Caenorhabditis elegans (C. elegans), introduced to the broad scientific community by Brenner in 1974, fulfills each of these three essential guidelines [2]. Although initially used extensively by the developmental biology community, its recent adoption by the biomedical and environmental toxicology scientists has strengthened experimental design power in these fields [3]. Relative to traditional model organisms, e.g. rat, mouse, dog (mammals) and Arabidopsis (plants), the invertebrate species C. elegans has begun to be recognized as invaluable. For example, it requires a relatively small budget project compared to other possible organisms, is quite small and transparent, has a short lifespan and has relatively simple anatomy and physiology [4].
    Journal of Environmental and Analytical Toxicology. 02/2012; Supplemental(4):215.