Human sound localization at near-threshold levels.

Central Systems Laboratory, Kresge Hearing Research Institute, 1301 E. Ann Street, Ann Arbor, MI 48109-0506, USA.
Hearing Research (Impact Factor: 2.54). 02/2005; 199(1-2):124-34. DOI:10.1016/j.heares.2004.08.001
Source: PubMed

ABSTRACT Physiological studies of spatial hearing show that the spatial receptive fields of cortical neurons typically are narrow at near-threshold levels, broadening at moderate levels. The apparent loss of neuronal spatial selectivity at increasing sound levels conflicts with the accurate performance of human subjects localizing at moderate sound levels. In the present study, human sound localization was evaluated across a wide range of sensation levels, extending down to the detection threshold. Listeners reported whether they heard each target sound and, if the target was audible, turned their heads to face the apparent source direction. Head orientation was tracked electromagnetically. At near-threshold levels, the lateral (left/right) components of responses were highly variable and slightly biased towards the midline, and front vertical components consistently exhibited a strong bias towards the horizontal plane. Stimulus levels were specified relative to the detection threshold for a front-positioned source, so low-level rear targets often were inaudible. As the sound level increased, first lateral and then vertical localization neared asymptotic levels. The improvement of localization over a range of increasing levels, in which neural spatial receptive fields presumably are broadening, indicates that sound localization does not depend on narrow spatial receptive fields of cortical neurons.

0 0
  • [show abstract] [hide abstract]
    ABSTRACT: Sound localization in both humans and monkeys is tolerant to changes in sound levels. The underlying neural mechanism, however, is not well understood. This study reports the level dependence of individual neurons' spatial receptive fields (SRFs) in the primary auditory cortex (A1) and the adjacent caudal field in awake marmoset monkeys. We found that most neurons' excitatory SRF components were spatially confined in response to broadband noise stimuli delivered from the upper frontal sound field. Approximately half the recorded neurons exhibited little change in spatial tuning width over a ~20-dB change in sound level, whereas the remaining neurons showed either expansion or contraction in their tuning widths. Increased sound levels did not alter the percent distribution of tuning width for neurons collected in either cortical field. The population-averaged responses remained tuned between 30- and 80-dB sound pressure levels for neuronal groups preferring contralateral, midline, and ipsilateral locations. We further investigated the spatial extent and level dependence of the suppressive component of SRFs using a pair of sequentially presented stimuli. Forward suppression was observed when the stimuli were delivered from "far" locations, distant to the excitatory center of an SRF. In contrast to spatially confined excitation, the strength of suppression typically increased with stimulus level at both the excitatory center and far regions of an SRF. These findings indicate that although the spatial tuning of individual neurons varied with stimulus levels, their ensemble responses were level tolerant. Widespread spatial suppression may play an important role in limiting the sizes of SRFs at high sound levels in the auditory cortex.
    Journal of Neurophysiology 05/2012; 108(3):810-26. · 3.30 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: This study aimed to characterize horizontal plane sound localization in interfering noise at different signal-to-noise ratios (SNRs) and to compare performance across normal-hearing listeners and users of unilateral and bilateral cochlear implants (CIs). CI users report difficulties with listening in noisy environments. Although their difficulties with speech understanding have been investigated in several studies, the ability to localize sounds in background noise has not extensively been examined, despite the benefits of binaural hearing being greatest in noisy situations. Sound localization is a measure of binaural processing and is thus well suited to assessing the benefit of bilateral implantation. The results will inform clinicians and implant manufacturers how to focus their efforts to improve localization with CIs in noisy situations. Six normal-hearing listeners, four unilateral, and 10 bilateral CI users indicated the perceived location of sound sources using a light pointer method. Target sounds were noise pulses played from one of 11 loudspeakers placed between -80 and +80 degrees in the frontal horizontal plane in the free field. Localization was assessed in quiet and in diffuse background noise at SNRs between +10 and -7 dB. Speech reception thresholds were measured and their relation to the localization results examined. Localization performance declined with decreasing SNR: target sounds were perceived closer to the median plane and the standard deviation of responses increased. Localization performance across groups was compared using a measure of "Spatial Resolvability" (SR). This measure gives the angular separation between two sound sources that would enable an ideal observer to correctly distinguish them 69.1% of the time. For all participants SR increased with decreasing SNR, that is, at low SNRs the spatial separation between sound sources remained distinguishable only when it was larger. Normal-hearing participants performed best, with SR between 1.4 and 5.1 degrees in quiet. Bilateral CI users showed SR between 8.3 and 43.6 degrees in quiet, corresponding approximately to the spatial resolution of normal-hearing listeners at an SNR of -5 dB. Most bilateral CI users had lost the ability to correctly determine which side the sound came from at an SNR of -3 dB. Overall, the SNR had to be at least +7 dB to achieve localization performance near to that in quiet for all bilateral CI users. No significant correlation was found between spatial resolution and speech reception thresholds, but the speech processor sensitivity setting did significantly affect performance. Unilateral CI users showed the most severe localization problems, with only two of four participants being able to correctly determine which side sounds came from in quiet. This study is the first to examine sound localization with CIs at various SNRs and to compare it with normal hearing. The results confirm that localization with CIs is strongly disrupted in noisy situations. Bilateral CIs were shown to be clearly superior over unilateral CIs for localization in quiet and in noisy situations. With bilateral CIs, localization declined at moderately high absolute noise levels (>63 dB SPL), suggesting that an extension of the acoustic-dynamic range to higher levels would be beneficial. The absence of a relation between speech reception thresholds and spatial resolution highlights the need for additional clinical tests to assess the binaural benefit of a second implant.
    Ear and hearing 05/2012; 33(4):445-57. · 2.06 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: One of the principal auditory disabilities associated with older age is difficulty in locating and tracking sources of sound. This study investigated whether these difficulties are associated with deterioration in the representation of space in the auditory cortex. In psychophysical tests, half of a group of older (>60 years) adults displayed spatial acuity similar to that of young adults throughout the frontal horizontal plane. The remaining half had considerably poorer spatial acuity at the more peripheral regions of frontal space. Computational modeling of electroencephalographic responses to abrupt location shifts demonstrated marked differences in the spatial tuning of populations of cortical neurons between the older adults with poor spatial acuity on the one hand, and those with good spatial acuity, as well as young adults, on the other hand. In those with poor spatial acuity, cortical responses contained little information with which to distinguish peripheral locations. We demonstrate a clear link between neural responses and spatial acuity measured behaviorally, and provide evidence for age-related changes in the coding of horizontal space.
    Neurobiology of aging 10/2013; · 5.94 Impact Factor