Article

Identification and testing of a gene expression signature of invasive carcinoma cells within primary mammary tumors

Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA.
Cancer Research (Impact Factor: 9.28). 01/2005; 64(23):8585-94. DOI: 10.1158/0008-5472.CAN-04-1136
Source: PubMed

ABSTRACT We subjected cells collected using an in vivo invasion assay to cDNA microarray analysis to identify the gene expression profile of invasive carcinoma cells in primary mammary tumors. Expression of genes involved in cell division, survival, and cell motility were most dramatically changed in invasive cells indicating a population that is neither dividing nor apoptotic but intensely motile. In particular, the genes coding for the minimum motility machine that regulates beta-actin polymerization at the leading edge and, therefore, the motility and chemotaxis of carcinoma cells, were dramatically up-regulated. However, ZBP1, which restricts the localization of beta-actin, the substrate for the minimum motility machine, was down-regulated. This pattern of expression implicated ZBP1 as a suppressor of invasion. Reexpression of ZBP1 in metastatic cells with otherwise low levels of ZBP1 reestablished normal patterns of beta-actin mRNA targeting and suppressed chemotaxis and invasion in primary tumors. ZBP1 reexpression also inhibited metastasis from tumors. These experiments support the involvement in metastasis of the pathways identified in invasive cells, which are regulated by ZBP1.

Full-text

Available from: Sumanta Goswami, Apr 22, 2015
0 Followers
 · 
94 Views
  • Biomarkers in Medicine 02/2015; 9(2):81-4. DOI:10.2217/bmm.14.104 · 2.86 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: LIM kinases (LIMKs) are important cell cytoskeleton regulators that play a prominent role in cancer manifestation and neuronal diseases. The LIMK family consists of two homologues, LIMK1 and LIMK2, which differ from one another in expression profile, intercellular localization, and function. The main substrate of LIMK is cofilin, a member of the actin-depolymerizing factor (ADF) protein family. When phosphorylated by LIMK, cofilin is inactive. LIMKs play a contributory role in several neurodevelopmental disorders and in cancer growth and metastasis. We recently reported the development and validation of a novel LIMK inhibitor, referred to here as T56-LIMKi, using a combination of computational methods and classical biochemistry techniques. Here we report that T56-LIMKi inhibits LIMK2 with high specificity, and shows little or no cross-reactivity with LIMK1. We found that T56-LIMKi decreases phosphorylated cofilin (p-cofilin) levels and thus inhibits growth of several cancerous cell lines, including those of pancreatic cancer, glioma and schwannoma. Because the most promising in-vitro effect of T56-LIMKi was observed in the pancreatic cancer cell line Panc-1, we tested the inhibitor on a nude mouse Panc-1 xenograft model. T56-LIMKi reduced tumor size and p-cofilin levels in the Panc-1 tumors, leading us to propose T56-LIMKi as a candidate drug for cancer therapy.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The leading cause of death in cancer patients is metastasis. Invasion is an integral part of metastasis and is carried out by proteolytic structures called invadopodia at the cellular level. In this introductory review, we start by evaluating the definition of invadopodia. While presenting the upstream signaling events involved, we integrate current models on invadopodia. In addition, we discuss the significance of invadopodia in 2D and 3D and in vivo. We finally point out technical challenges and conclude with open questions in the field.
    Turkish Journal of Biology 11/2014; 38(6):740-747. DOI:10.3906/biy-1404-110 · 1.22 Impact Factor