Anatomical mapping of white matter hyperintensities (WMH) - Exploring the relationships between periventricular WMH, deep WMH, and total WMH burden

Department of Neurology, University of California at Davis, Davis, Calif, USA.
Stroke (Impact Factor: 6.02). 02/2005; 36(1):50-5. DOI: 10.1161/01.STR.0000150668.58689.f2
Source: PubMed

ABSTRACT MRI segmentation and mapping techniques were used to assess evidence in support of categorical distinctions between periventricular white matter hyperintensities (PVWMH) and deep WMH (DWMH). Qualitative MRI studies generally identify 2 categories of WMH on the basis of anatomical localization. Separate pathophysiologies and behavioral consequences are often attributed to these 2 classes of WMH. However, evidence to support these empirical distinctions has not been rigorously sought.
MRI analysis of 55 subjects included quantification of WMH volume, mapping onto a common anatomical image, and spatial localization of each WMH voxel. WMH locations were then divided into PVWMH and DWMH on the basis of distance from the lateral ventricles and correlations, with total WMH volume determined. Periventricular distance histograms of WMH voxels were also calculated.
PVWMH and DWMH were highly correlated with total WMH (R2>0.95) and with each other (R2>0.87). Mapping of all WMH revealed smooth expansion from around central cerebrospinal fluid spaces into more distal cerebral white matter with increasing WMH volume.
PVWMH, DWMH, and total WMH are highly correlated with each other. Moreover, spatial analysis failed to identify distinct subpopulations for PVWMH and DWMH. These results suggest that categorical distinctions between PVWMH and DWMH may be arbitrary, and conclusions regarding individual relationships between causal factors or behavior for PVWMH and DWMH may more accurately reflect total WMH volume relationships.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Understanding the relationships between age-related changes in brain structure and cognitive function has been limited by inconsistent methods for assessing brain imaging, small sample sizes, and racially/ethnically homogeneous cohorts with biased selection based on risk factors. These limitations have prevented the generalizability of results from brain morphology studies. To determine the association of 3.0-T structural brain magnetic resonance (MR) imaging measurements with cognitive function in the multiracial/multiethnic, population-based Dallas Heart Study. Whole-brain, 2-dimensional, fluid-attenuated inversion recovery and 3-dimensional, magnetization-prepared, rapid acquisition with gradient echo MR imaging at 3.0 T was performed in 1645 Dallas Heart Study participants (mean [SD] age, 49.9 [10.5] years; age range, 19-85 years) who received both brain MR imaging and cognitive screening with the Montreal Cognitive Assessment between September 18, 2007, and December 28, 2009. Measurements were obtained for white matter hyperintensity volume, total brain volume, gray matter volume, white matter volume, cerebrospinal fluid volume, and hippocampal volume. Linear regression and a best predictive model were developed to determine the association of MR imaging biomarkers with the Montreal Cognitive Assessment total score and domain-specific questions. High-resolution anatomical MR imaging was used to quantify brain volumes. Scores on the screening Montreal Cognitive Assessment were used for cognitive assessment in participants. After adjustment for demographic variables, total brain volume (P < .0001, standardized estimate [SE] = .1069), gray matter volume (P < .0001, SE = .1156), white matter volume (P = .008, SE = .0687), cerebrospinal fluid volume (P = .012, SE = -.0667), and hippocampal volume (P < .0001) were significantly associated with cognitive performance. A best predictive model identified gray matter volume (P < .001, SE = .0021), cerebrospinal fluid volume (P = .01, SE = .0024), and hippocampal volume (P = .004, SE = .1017) as 3 brain MR imaging biomarkers significantly associated with the Montreal Cognitive Assessment total score. Questions specific to the visuospatial domain were associated with the most brain MR imaging biomarkers (total brain volume, gray matter volume, white matter volume, cerebrospinal fluid volume, and hippocampal volume), while questions specific to the orientation domain were associated with the least brain MR imaging biomarkers (only hippocampal volume). Brain MR imaging volumes, including total brain volume, gray matter volume, cerebrospinal fluid volume, and hippocampal volume, were independently associated with cognitive function and may be important early biomarkers of risk for cognitive insult in a young multiracial/multiethnic population. A best predictive model indicated that a combination of multiple neuroimaging biomarkers may be more effective than a single brain MR imaging volume measurement.
    JAMA Neurology 12/2014; 72(2). DOI:10.1001/jamaneurol.2014.3418 · 7.01 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Subcortical hyperintensities (SHs) are radiological entities commonly observed on magnetic resonance imaging (MRI) of patients with Alzheimer's disease (AD) and normal elderly controls. Although the presence of SH is believed to indicate some form of subcortical vasculopathy, pathological heterogeneity, methodological differences, and the contribution of brain atrophy associated with AD pathology have yielded inconsistent results in the literature. Using the Lesion Explorer (LE) MRI processing pipeline for SH quantification and brain atrophy, this study examined SH volumes of interest and cognitive function in a sample of patients with AD (n = 265) and normal elderly controls (n = 100) from the Sunnybrook Dementia Study. Compared with healthy controls, patients with AD were found to have less gray matter, less white matter, and more sulcal and ventricular cerebrospinal fluid (all significant, P <0.0001). Additionally, patients with AD had greater volumes of whole-brain SH (P <0.01), periventricular SH (pvSH) (P <0.01), deep white SH (dwSH) (P <0.05), and lacunar lesions (P <0.0001). In patients with AD, regression analyses revealed a significant association between global atrophy and pvSH (P = 0.02) and ventricular atrophy with whole-brain SH (P <0.0001). Regional volumes of interest revealed significant correlations with medial middle frontal SH volume and executive function (P <0.001) in normal controls but not in patients with AD, global pvSH volume and mental processing speed (P <0.01) in patients with AD, and left temporal SH volume and memory (P <0.01) in patients with AD. These brain-behavior relationships and correlations with brain atrophy suggest that subtle, yet measurable, signs of small vessel disease may have potential clinical relevance as targets for treatment in Alzheimer's dementia.
    Alzheimer's Research and Therapy 08/2014; 6(4):49. DOI:10.1186/alzrt279 · 3.50 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: An increased electroencephalographic (EEG) upper/lower alpha power ratio has been associated with less regional blood perfusion, atrophy of the temporoparietal region of the brain, and reduction of hippocampal volume in subjects affected by mild cognitive impairment due to Alzheimer's disease as compared with subjects who do not develop the disease. Moreover, EEG theta frequency activity is quite different in these groups. This study investigated the correlation between biomarkers and memory performance. EEG α3/α2 power ratio and cortical thickness were computed in 74 adult subjects with prodromal Alzheimer's disease. Twenty of these subjects also underwent assessment of blood perfusion by single-photon emission computed tomography (SPECT). Pearson's r was used to assess the correlation between cortical thinning, brain perfusion, and memory impairment. In the higher α3/α2 frequency power ratio group, greater cortical atrophy and lower regional perfusion in the temporoparietal cortex was correlated with an increase in EEG theta frequency. Memory impairment was more pronounced in the magnetic resonance imaging group and SPECT groups. A high EEG upper/low alpha power ratio was associated with cortical thinning and less perfusion in the temporoparietal area. Moreover, atrophy and less regional perfusion were significantly correlated with memory impairment in subjects with prodromal Alzheimer's disease. The EEG upper/lower alpha frequency power ratio could be useful for identifying individuals at risk for progression to Alzheimer's dementia and may be of value in the clinical context.
    Neuropsychiatric Disease and Treatment 02/2015; 11:461-70. DOI:10.2147/NDT.S78830 · 2.15 Impact Factor


1 Download
Available from