Persistent improvement in synaptic and cognitive functions in an Alzheimer mouse model after rolipram treatment.

The Center for Dementia Research, Nathan Kline Institute for Psychiatric Research, Orangeburg, New York, USA.
Journal of Clinical Investigation (Impact Factor: 13.77). 01/2005; 114(11):1624-34. DOI: 10.1172/JCI22831
Source: PubMed

ABSTRACT Evidence suggests that Alzheimer disease (AD) begins as a disorder of synaptic function, caused in part by increased levels of amyloid beta-peptide 1-42 (Abeta42). Both synaptic and cognitive deficits are reproduced in mice double transgenic for amyloid precursor protein (AA substitution K670N,M671L) and presenilin-1 (AA substitution M146V). Here we demonstrate that brief treatment with the phosphodiesterase 4 inhibitor rolipram ameliorates deficits in both long-term potentiation (LTP) and contextual learning in the double-transgenic mice. Most importantly, this beneficial effect can be extended beyond the duration of the administration. One course of long-term systemic treatment with rolipram improves LTP and basal synaptic transmission as well as working, reference, and associative memory deficits for at least 2 months after the end of the treatment. This protective effect is possibly due to stabilization of synaptic circuitry via alterations in gene expression by activation of the cAMP-dependent protein kinase (PKA)/cAMP regulatory element-binding protein (CREB) signaling pathway that make the synapses more resistant to the insult inflicted by Abeta. Thus, agents that enhance the cAMP/PKA/CREB pathway have potential for the treatment of AD and other diseases associated with elevated Abeta42 levels.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Acupuncture has beneficial effects in vascular dementia (VaD) patients. The underlying mechanism, however, remains unknown. The present study was designed to investigate whether the cAMP/PKA/CREB cascade is involved in the mechanism of acupuncture in cerebral multi-infarction rats. In this study, cerebral multi-infarction was modeled in adult Wistar rats by homologous blood clot emboli. After a two-week acupuncture treatment at Zusanli (ST36), hippocampal-dependent memory was tested by employing a radial arm maze test. The hippocampus was isolated for analyses of cAMP concentration, phosphodiesterase (PDE) activity and CREB/pCREB and ERK/pERK expressions. The Morris water maze (MWM) task and CREB phosphorylation were evaluated in the presence of PKA-selective peptide inhibitor (H89). The radial arm maze test results demonstrated that acupuncture treatment at ST36 reversed hippocampal-dependent memory in impaired animals. Compared to those of the impaired group, cAMP concentration, PKA activity and pCREB and pERK expressions were increased following acupuncture therapy. Finally, the blockade of PKA reversed the increase in CREB phosphorylation and the improvement in recognitive function induced by acupuncture treatment. These results suggest that acupuncture could improve hippocampus function by modulating the cAMP/PKA/CREB signaling pathway, which represents a molecular mechanism of acupuncture for recognitive function in cerebral multi-infarction rats. Copyright © 2014. Published by Elsevier Inc.
    Physiology & Behavior 12/2014; DOI:10.1016/j.physbeh.2014.12.001 · 3.03 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Fused in sarcoma/translocated in liposarcoma (FUS/TLS or FUS) is a multifunctional RNA/DNA-binding protein that is pathologically associated with cancer and neurodegeneration. To gain insight into the vital functions of FUS and how a loss of FUS function impacts cellular homeostasis, FUS expression was reduced in different cellular models through RNA interference. Our results show that a loss of FUS expression severely impairs cellular proliferation and leads to an increase in phosphorylated histone H3, a marker of mitotic arrest. A quantitative proteomics analysis performed on cells undergoing various degrees of FUS knockdown revealed protein expression changes for known RNA targets of FUS, consistent with a loss of FUS function with respect to RNA processing. Proteins that changed in expression as a function of FUS knockdown were associated with multiple processes, some of which influence cell proliferation including cell cycle regulation, cytoskeletal organization, oxidative stress and energy homeostasis. FUS knockdown also correlated with increased expression of the closely related protein EWS (Ewing's sarcoma). We demonstrate that the maladaptive phenotype resulting from FUS knockdown is reversible and can be rescued by re-expression of FUS or partially rescued by the small-molecule rolipram. These results provide insight into the pathways and processes that are regulated by FUS, as well as the cellular consequences for a loss of FUS function.
    Cell Death & Disease 01/2014; 5:e1572. DOI:10.1038/cddis.2014.508 · 5.18 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: At 8 weeks after intragastric administration of icariin to senescence-accelerated mice (P8 strain), Morris water maze results showed that escape latency was shortened, and the number of platform crossings was increased. Immunohistochemical staining and western blot assay detected significantly increased levels of cyclic adenosine monophosphate response element binding protein. These results suggest that icariin upregulates phosphorylated cyclic adenosine monophosphate response element binding protein levels and improves learning and memory functions in hippocampus of the senescence-accelerated mouse.
    Neural Regeneration Research 04/2012; 7(12):885-90. DOI:10.3969/j.issn.1673-5374.2012.12.001 · 0.23 Impact Factor

Full-text (2 Sources)

Available from
Feb 6, 2015