Article

High intake of milk, but not meat, increases insulin and insulin resistance in 8 year old boys

Department of Human Nutrition and Centre for Advanced Food Studies, The Royal Veterinary and Agricultural University, Frederiksberg, Denmark.
European Journal of Clinical Nutrition (Impact Factor: 2.95). 04/2005; 59(3):393-8. DOI: 10.1038/sj.ejcn.1602086
Source: PubMed

ABSTRACT Our objective was to examine if a high animal protein intake from milk or meat increased s-insulin and insulin resistance in healthy, prepubertal children. A high animal protein intake results in higher serum branched chain amino acids (BCAA; leucine, isoleucine and valine) concentrations, which are suggested to stimulate insulin secretion. Furthermore, milk possesses some postprandial insulinotrophic effect that is not related to its carbohydrate content.
A total of 24 8-y-old boys were asked to take 53 g protein as milk or meat daily. At baseline and after 7 days, diet was registered, and insulin, glucose, and amino acids were determined. Insulin resistance and beta cell function were calculated with the homeostasis model assessment.
Protein intake increased by 61 and 54% in the milk- and meat-group, respectively. In the milk-group, fasting s-insulin concentrations doubled, which caused the insulin resistance to increase similarly. In the meat-group, there was no increase in insulin and insulin resistance. As the BCAAs increased similarly in both groups, stimulation of insulin secretion through BCAAs is not supported.
Our results indicate that a short-term high milk, but not meat, intake increased insulin secretion and resistance. The long-term consequences of this are unknown. The effect of high protein intakes from different sources on glucose-insulin metabolism needs further studying.

Download full-text

Full-text

Available from: Camilla Hoppe, Sep 03, 2015
1 Follower
 · 
182 Views
 · 
49 Downloads
  • Source
    • "Plasma BCAAs (leucine, isoleucine, valine) and glutamine/glutamate are increased in obesity, insulin resistance and type 2-diabetes (T2D) [2-9]. An extra daily intake of 53 g milk protein but not 53 g meat increased serum insulin and insulin resistance in 8-year-old boys [10]. Impaired BCAA catabolism of adipocytes is a crucial metabolic deviation of obesity [11,12] (Figure  1A). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Milk protein intake has recently been suggested to improve metabolic health. This Perspective provides evidence that metabolic effects of milk protein intake have to be regarded in the context of the individual's pre-existing metabolic and exercise status. Milk proteins provide abundant branched-chain amino acids (BCAAs) and glutamine. Plasma BCAAs and glutamine are increased in obesity and insulin resistance, but decrease after gastric bypass surgery resulting in weight loss and improved insulin sensitivity. Milk protein consumption results in postprandial hyperinsulinemia in obese subjects, increases body weight of overweight adolescents and may thus deteriorate pre-existing metabolic disturbances of obese, insulin resistant individuals.
    Nutrition & Metabolism 10/2013; 10(1):60. DOI:10.1186/1743-7075-10-60 · 3.36 Impact Factor
  • Source
    • "Water soluble, easily hydrolysable whey proteins in comparison to all other animal-derived structural muscle proteins provide highest amounts of the branched-chain amino acids (BCAAs) leucine, isoleucine and valine, which raise postprandial insulin plasma levels within minutes [15-17]. Furthermore, whey proteins induce the secretion of the incretin glucose-dependent insulinotropic polypeptide (GIP), which in concert with insulinotropic BCAAs co-stimulates insulin secretion of pancreatic β-cells [15,16]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Milk has been recognized to represent a functionally active nutrient system promoting neonatal growth of mammals. Cell growth is regulated by the nutrient-sensitive kinase mechanistic target of rapamycin complex 1 (mTORC1). There is still a lack of information on the mechanisms of mTORC1 up-regulation by milk consumption. This review presents milk as a materno-neonatal relay system functioning by transfer of preferential amino acids, which increase plasma levels of glucose-dependent insulinotropic polypeptide (GIP), glucagon-like peptide-1 (GLP-1), insulin, growth hormone (GH) and insulin-like growth factor-1 (IGF-1) for mTORC1 activation. Importantly, milk exosomes, which regularly contain microRNA-21, most likely represent a genetic transfection system enhancing mTORC1-driven metabolic processes. Whereas human breast milk is the ideal food for infants allowing appropriate postnatal growth and species-specific metabolic programming, persistent high milk signaling during adolescence and adulthood by continued cow s milk consumption may promote mTORC1-driven diseases of civilization.
    Nutrition Journal 07/2013; 12(1):103. DOI:10.1186/1475-2891-12-103 · 2.64 Impact Factor
  • Source
    • "Women, who consumed two or more servings of skimmed milk everyday, were 22% more likely to suffer from severe acne and 44% more likely to develop cystic or nodular acne than those who consumed only one glass of skimmed milk a day [8]. Endocrine factors involved in acne may be affected by milk consumption because milk is an insulinotropic nutrient and has a high insulinemic index [28] which would increase serum insulin and IGF-1 levels [29-32]. Milk produced persistently by pregnant cows contains substantial amounts of steroids and androgen-precursors, which have been suggested to play another role in acne pathogenesis [33,34]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The role of dietary factors in the pathophysiology of acne vulgaris is highly controversial. Hence, the aim of this study was to determine the association between dietary factors and acne vulgaris among Malaysian young adults. A case-control study was conducted among 44 acne vulgaris patients and 44 controls aged 18 to 30 years from October 2010 to January 2011. Comprehensive acne severity scale (CASS) was used to determine acne severity. A questionnaire comprising items enquiring into the respondent's family history and dietary patterns was distributed. Subjects were asked to record their food intake on two weekdays and one day on a weekend in a three day food diary. Anthropometric measurements including body weight, height and body fat percentage were taken. Acne severity was assessed by a dermatologist. Cases had a significantly higher dietary glycemic load (175 ± 35) compared to controls (122 ± 28) (p < 0.001). The frequency of milk (p < 0.01) and ice-cream (p < 0.01) consumptions was significantly higher in cases compared to controls. Females in the case group had a higher daily energy intake compared to their counterparts in the control group, 1812 ± 331 and 1590 ± 148 kcal respectively (p < 0.05). No significant difference was found in other nutrient intakes, Body Mass Index, and body fat percentage between case and control groups (p > 0.05). Glycemic load diet and frequencies of milk and ice cream intake were positively associated with acne vulgaris.
    BMC Dermatology 08/2012; 12:13. DOI:10.1186/1471-5945-12-13
Show more