Article

Insulin substrates 1 and 2 are corequired for activation of atypical protein kinase C and Cbl-dependent phosphatidylinositol 3-kinase during insulin action in immortalized brown adipocytes.

Research Service, James A. Haley Veterans Hospital, and Department of Internal Medicine, University of South Florida College of Medicine, Tampa, Florida 33612, USA.
Biochemistry (Impact Factor: 3.38). 01/2005; 43(49):15503-9. DOI: 10.1021/bi049221y
Source: PubMed

ABSTRACT Phosphatidylinositol 3-kinase (PI3K)-dependent activation of atypical protein kinase C (aPKC) is required for insulin-stimulated glucose transport. Although insulin receptor substrate-1 (IRS-1) and IRS-2, among other factors, activate PI3K, there is little information on the relative roles of IRS-1and IRS-2 during aPKC activation by insulin action in specific cell types. Presently, we have used immortalized brown adipocytes in which either IRS-1 or IRS-2 has been knocked out by recombinant methods to examine IRS-1 and IRS-2 requirements for activation of aPKC. We have also used these adipocytes to see if IRS-1 and IRS-2 are required for activation of Cbl, which is required for insulin-stimulated glucose transport and has been found to function upstream of both PI3K/aPKC and Crk during thiazolidinedione action in 3T3/L1 adipocytes [Miura et al. (2003) Biochemistry 42, 14335]. In brown adipocytes in which either IRS-1 or IRS-2 was knocked out, insulin-induced increases in aPKC activity and glucose transport were markedly diminished. These effects of insulin on aPKC and glucose transport were fully restored by retroviral-mediated expression of IRS-1 or IRS-2 in their respective knockout cells. Knockout of IRS-1 or IRS-2 also inhibited insulin-induced increases in Cbl binding to the p85 subunit of PI3K, which, along with IRS-1/2, may be required for activation of PI3K, aPKC, and glucose transport during insulin action in 3T3/L1 adipocytes. These findings provide evidence that directly links both IRS-1 and IRS-2 to aPKC activation in immortalized brown adipocytes, and further suggest that IRS-1 and IRS-2 are required for the activation of Cbl/PI3K during insulin action in these cells.

0 Bookmarks
 · 
39 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Obesity, the metabolic syndrome, and aging share several pathogenic features in both humans and non-human primates, including insulin resistance and inflammation. Since muscle and liver are considered key integrators of metabolism, we sought to determine in biopsies from lean and obese aging rhesus monkeys the nature of defects in insulin activation and, further, the potential for mitigation of such defects by an in vivo insulin sensitizer, rosiglitazone, and a thiazolidinedione activator of the peroxisome proliferator-activated receptor gamma. The peroxisome proliferator-activated receptor gamma agonist reduced hyperinsulinemia, improved insulin sensitivity, lowered plasma triglycerides and free fatty acids, and increased plasma adiponectin. In muscle of obese monkeys, previously shown to exhibit defective insulin signaling, the insulin sensitizer improved insulin activation of atypical protein kinase C (aPKC), the defective direct activation of aPKC by phosphatidylinositol (PI)-3,4,5-(PO₄)₃, and 5'-AMP-activated protein kinase and increased carnitine palmitoyltransferase-1 mRNA expression, but it did not improve insulin activation of insulin receptor substrate (IRS)-1-dependent PI 3-kinase (IRS-1/PI3K), protein kinase B, or glycogen synthase. We found that, although insulin signaling was impaired in muscle, insulin activation of IRS-1/PI3K, IRS-2/PI3K, protein kinase B, and aPKC was largely intact in liver and that rosiglitazone improved insulin signaling to aPKC in muscle by improving responsiveness to PI-3,4,5-(PO₄)₃.
    Antioxidants & Redox Signaling 01/2011; 14(2):207-19. · 8.20 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Atypical protein kinase C (aPKC) isoforms mediate insulin effects on glucose transport in muscle and adipose tissues and lipid synthesis in liver and support other metabolic processes, expression of enzymes needed for islet insulin secretion and hepatic glucose production/release, CNS appetite suppression, and inflammatory responses. In muscle, selective aPKC deficiency impairs glucose uptake and produces insulin resistance and hyperinsulinemia, which, by activating hepatic aPKC, provokes inordinate increases in lipid synthesis and produces typical "metabolic syndrome" features. In contrast, hepatic aPKC deficiency diminishes lipid synthesis and protects against metabolic syndrome features. Unfortunately, aPKC is deficient in muscle but paradoxically conserved in liver in obesity and type 2 diabetes mellitus; this combination is particularly problematic because it promotes lipid and carbohydrate abnormalities. Accordingly, metabolic effects of aPKCs can be "good" or "bad," depending upon nutritional status; thus, muscle glucose uptake, islet insulin secretion, hepatic glucose and lipid production/release, and adipose fat synthesis/storage would be important for survival during periods of limited food availability and therefore be "good." However, during times of food surfeit, excessive activation of hepatic aPKC, whether caused by overnutrition or impairments in extrahepatic effects of insulin, would lead to inordinate increases in hepatic lipid synthesis and metabolic syndrome features and therefore be "bad." In keeping with these ideas, the inhibition of hepatic aPKC markedly ameliorates lipid and carbohydrate abnormalities in experimental models of obesity and type 2 diabetes. We postulate that a similar approach may be useful for treating humans.
    AJP Endocrinology and Metabolism 12/2009; 298(3):E385-94. · 4.51 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Diabetes is a profound disease that results in a severe lack of regulation of systemic salt and water balance. From our earlier work on the endocrine regulation of salt taste at the level of the epithelial sodium channel (ENaC), we have begun to investigate the ability of insulin to alter ENaC function with patch-clamp recording on isolated mouse taste receptor cells (TRCs). In fungiform and vallate TRCs that exhibit functional ENaC currents (e.g., amiloride-sensitive Na(+) influx), insulin (5-20 nM) caused a significant increase in Na(+) influx at -80 mV (EC(50) = 7.53 nM). The insulin-enhanced currents were inhibited by amiloride (30 μM). Similarly, in ratiometric Na(+) imaging using SBFI, insulin treatment (20 nM) enhanced Na(+) movement in TRCs, consistent with its action in electrophysiological assays. The ability of insulin to regulate ENaC function is dependent on the enzyme phosphoinositide 3-kinase since treatment with the inhibitor LY294002 (10 μM) abolished insulin-induced changes in ENaC. To test the role of insulin in the regulation of salt taste, we have characterized behavioral responses to NaCl using a mouse model of acute hyperinsulinemia. Insulin-treated mice show significant avoidance of NaCl at lower concentrations than the control group. Interestingly, these differences between groups were abolished when amiloride (100 μM) was added into NaCl solutions, suggesting that insulin was regulating ENaC. Our results are consistent with a role for insulin in maintaining functional expression of ENaC in mouse TRCs.
    AJP Cell Physiology 11/2010; 300(4):C860-71. · 3.71 Impact Factor