Article

Rewiring cell signaling: the logic and plasticity of eukaryotic protein circuitry.

Department of Cellular and Molecular Pharmacology, California Institute for Quantitative Biomedical Research, University of California San Francisco, 600 16(th) Street, San Francisco, California 94143-2240, USA.
Current Opinion in Structural Biology (Impact Factor: 8.75). 01/2005; 14(6):690-9. DOI: 10.1016/j.sbi.2004.10.004
Source: PubMed

ABSTRACT Living cells rival computers in their ability to process external information and make complex behavioral decisions. Many of these decisions are made by networks of interacting signaling proteins. Ongoing structural, biochemical and cell-based studies have begun to reveal several common principles by which protein components are used to specifically transmit and process information. Recent engineering studies demonstrate that these relatively simple principles can be used to rewire signaling behavior in a process that mimics the evolution of new phenotypic responses.

0 Followers
 · 
65 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Synthetic Biology is already an object of intensive debate. However, to a great extent the discussion to date has been concerned with fundamental ethical, religious and philosophical questions. By contrast, based on an investigation of the field’s scientific and technological character, this book focuses on new functionalities provided by synthetic biology and explores the associated opportunities and risks. Following an introduction to the subject and a discussion of the most central paradigms and methodologies, the book provides an overview of the structure of this field of science and technology. It informs the reader about the current stage of development, as well as topical problems and potential opportunities in important fields of application. But not only the science itself is in focus. In order to investigate its broader impact, ecological as well as ethical implications will be considered, paving the way for a discussion of responsibilities in the context of a field at a transitional crossroads between basic and applied science. In closing, the requirements for a suitable regulatory framework are discussed. The book is intended as a source of information and orientation for researchers, students and practitioners in the natural sciences and technology assessment; for members of scientific and technological, governmental and funding institutions; and for members of the general public interested in essential information on the current status, prospects and implications of synthetic biology.
    1st edited by Bernd Giese, Christian Pade, Henning Wigger, Arnim von Gleich, 01/2015; Springer Cham Heidelberg New York Dordrecht London., ISBN: 978-3-319-02783-8
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To carry out their activities biological macromolecules balance different physical traits, such as stability, interaction affinity, and selectivity. How such often-opposing traits are encoded in a macromolecular system is critical to our understanding of evolutionary processes and ability to design new molecules with desired functions. We present a framework for constraining design simulations to balance different physical characteristics. Each trait is represented by the equilibrium fractional occupancy of the desired state relative to its alternatives, ranging from none to full occupancy, and the different traits are combined using Boolean operators to effect a ‘fuzzy’-logic language for encoding any combination of traits. In another paper, we presented a new combinatorial-backbone design algorithm AbDesign where the fuzzy-logic framework was used to optimize protein backbones and sequences for both stability and binding affinity in antibody-design simulation. We now extend this framework and find that fuzzy-logic design simulations reproduce sequence and structure design principles seen in nature to underlie exquisite specificity on the one hand, and multispecificity on the other. The fuzzy-logic language is broadly applicable and could help define the space of tolerated and beneficial mutations in natural biomolecular systems and design artificial molecules that encode complex characteristics.
    Journal of Molecular Biology 10/2014; 426(24). DOI:10.1016/j.jmb.2014.10.002 · 3.96 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The bottom-up design of protein-based signaling networks is a key goal of synthetic biology; yet, it remains elusive due to our inability to tailor-make signal transducers and receptors that can be readily compiled into defined signaling networks. Here, we report a generic approach for the construction of protein-based molecular switches based on artficially autoinhibited proteases. Using structure-guided design and directed protein evolution, we created signal transducers based on artificially autoinhibited proteases that can be activated following site-specific proteolysis and also demonstrate the modular design of an allosterically regulated protease receptor following recombination with an affinity clamp peptide receptor. Notably, the receptor's mode of action can be varied from >5-fold switch-OFF to >30-fold switch-ON solely by changing the length of the connecting linkers, demonstrating a high functional plasticity not previously observed in naturally occurring receptor systems. We also create an integrated signaling circuit based on two orthogonal autoinhibited protease units that can propagate and amplify molecular queues generated by the protease receptor. Finally, we present a generic two-component receptor architecture based on proximity-based activation of two autoinhibited proteases. Overall, the approach allows the design of protease-based signaling networks that, in principle, can be connected to any biological process.
    Proceedings of the National Academy of Sciences 10/2014; 111(45). DOI:10.1073/pnas.1405220111 · 9.81 Impact Factor

Preview

Download
0 Downloads
Available from