Article

Helicobacter pylori heat-shock protein 60 induces inflammatory responses through the Toll-like receptor-triggered pathway in cultured human gastric epithelial cells.

Department of Bacteriology, Okayama University, Okayama, Okayama, Japan
Microbiology (Impact Factor: 2.84). 01/2005; 150(Pt 12):3913-22. DOI: 10.1099/mic.0.27527-0
Source: PubMed

ABSTRACT Contact between Helicobacter pylori and gastric epithelial cells results in activation of NF-kappaB followed by secretion of interleukin (IL)-8. However, host-cell receptor(s) and their ligands involved in H. pylori-related IL-8 production have yet to be fully defined. In this study, the interaction between Toll-like receptors (TLRs), which are host receptors for pathogens involved in the innate immune response, and heat-shock protein (HSP) 60, an immune-potent antigen of H. pylori, was examined during H. pylori-induced IL-8 secretion in vitro. Recombinant H. pylori HSP60 (rHpHSP60) was prepared and added to cultured KATO III human gastric epithelial cells with or without pre-incubation with mouse monoclonal anti-TLR2 or anti-TLR4 antibodies. IL-8 mRNA expression and IL-8 protein release were analysed by Northern blotting and immunoassay. Involvement of NF-kappaB activation was analysed immunocytochemically by anti-NF-kappaB p65 antibody and ammonium pyrrolidinedithiocarbamate (PDTC), an inhibitor of NF-kappaB-mediated transcriptional activation. rHpHSP60 induced IL-8 mRNA expression and IL-8 secretion in a dose-dependent manner in KATO III cells. Anti-TLR2 antibody inhibited rHpHSP60-induced IL-8 secretion by 75 %, and anti-TLR4 antibody inhibited it by 30 %. rHpHSP60 induced nuclear translocation of NF-kappaB p65, which was inhibited by pretreatment with anti-TLR2 antibody. Treatment with PDTC significantly decreased the secretion of IL-8 induced by rHpHSP60. These findings suggest that H. pylori HSP60 activates NF-kappaB and induces IL-8 production through TLR-triggered pathways in gastric epithelial cells. Thus, it is possible that H. pylori HSP60 and TLR interaction in host cells contributes to the development of gastric inflammation caused by H. pylori infection.

0 Bookmarks
 · 
64 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Toll-like receptor (TLR) signaling represents one of the best studied pathways to implement defense mechanisms against invading microbes in human being as well as in animals. TLRs respond to specific microbial ligands and to danger signals produced by the host during infection, and initiate downstream cascades that activate both innate and adaptive immunity. TLRs are expressed by professional immune cells and by the large majority of non-hematopoietic cells, including epithelial cells. In epithelial tissues, TLR functions are particularly important because these sites are constantly exposed to microorganisms, due to their location at the host interface with the environment. While at these sites specific defense mechanisms and inflammatory responses are initiated via TLR signaling against pathogens, suppression or lack of TLR activation is also observed in response to the commensal microbiota. The mechanisms by which TLR signaling is regulated in mucosal epithelial cells include differential expression and levels of TLRs (and their signaling partners), their cellular localization and positioning within the tissue in a fashion that favors responses to pathogens while dampening responses to commensals and maintaining tissue homeostasis in physiologic conditions. In this review, the expression and activation of TLRs in mucosal epithelial cells of several sites of the human body are examined. Specifically, the oral cavity, the ear canal and eye, the airways, the gut, and the reproductive tract are discussed, along with how site-specific host defense mechanisms are implemented via TLR signaling.
    Frontiers in Immunology 08/2014; 5:386. DOI:10.3389/fimmu.2014.00386
  • [Show abstract] [Hide abstract]
    ABSTRACT: The gram-negative bacterium Helicobacter pylori (H. pylori) infects the stomachs of approximately half of the world's population. Although infection induces an immune response that contributes to chronic gastric inflammation, the response is not sufficient to eliminate the bacterium. H. pylori infection causes peptic ulcers, gastric cancer and mucosa-associated lymphoid tissue lymphoma. Disease outcome is linked to the severity of the host inflammatory response. Gastric epithelial cells represent the first line of innate immune defence against H. pylori, and respond to infection by initiating numerous cell signalling cascades, resulting in cytokine induction and the subsequent recruitment of inflammatory cells to the gastric mucosa. Pathogen recognition receptors of the Toll-like receptor (TLR) family mediate many of these cell signalling events. This review discusses recent findings on the role of various TLRs in the recognition of H. pylori in distinct cell types, describes the TLRs responsible for the recognition of individual H. pylori components and outlines the influence of innate immune activation on the subsequent development of the adaptive immune response. The mechanistic identification of host mediators of H. pylori-induced pathogenesis has the potential to reveal drug targets and opportunities for therapeutic intervention or prevention of H. pylori-associated disease by means of vaccines or immunomodulatory therapy.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Chronic inflammation has been associated with an increased risk of several human malignancies, a classic example being gastric adenocarcinoma (GC). Development of GC is known to result from infection of the gastric mucosa by Helicobacter pylori, which initially induces acute inflammation and, in a subset of patients, progresses over time to chronic inflammation, gastric atrophy, intestinal metaplasia, dysplasia, and finally intestinal-type GC. Germ-line encoded receptors known as pattern-recognition receptors (PRRs) are critical for generating mature pro-inflammatory cytokines that are crucial for both Th1 and Th2 responses. Given that H. pylori is initially targeted by PRRs, it is conceivable that dysfunction within genes of this arm of the immune system could modulate the host response against H. pylori infection, and subsequently influence the emergence of GC. Current evidence suggests that Toll-like receptors (TLRs) (TLR2, TLR3, TLR4, TLR5, and TLR9), nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs) (NOD1, NOD2, and NLRP3), a C-type lectin receptor (DC-SIGN), and retinoic acid-inducible gene (RIG)-I-like receptors (RIG-I and MDA-5), are involved in both the recognition of H. pylori and gastric carcinogenesis. In addition, polymorphisms in genes involved in the TLR (TLR1, TLR2, TLR4, TLR5, TLR9, and CD14) and NLR (NOD1, NOD2, NLRP3, NLRP12, NLRX1, CASP1, ASC, and CARD8) signaling pathways have been shown to modulate the risk of H. pylori infection, gastric precancerous lesions, and/or GC. Further, the modulation of PRRs has been suggested to suppress H. pylori-induced inflammation and enhance GC cell apoptosis, highlighting their potential relevance in GC therapeutics. In this review, we present current advances in our understanding of the role of the TLR and NLR signaling pathways in the pathogenesis of GC, address the involvement of other recently identified PRRs in GC, and discuss the potential implications of PRRs in GC immunotherapy.
    Frontiers in Immunology 01/2014; 5:336. DOI:10.3389/fimmu.2014.00336

Full-text (2 Sources)

Download
14 Downloads
Available from
May 21, 2014