Article

Selective angiotensin-converting enzyme C-domain inhibition is sufficient to prevent angiotensin I-induced vasoconstriction.

Department of Pharmacology, Erasmus MC, Rotterdam, The Netherlands.
Hypertension (Impact Factor: 7.63). 01/2005; 45(1):120-5. DOI: 10.1161/01.HYP.0000151323.93372.f5
Source: PubMed

ABSTRACT Somatic angiotensin-converting enzyme (ACE) contains 2 domains (C-domain and N-domain) capable of hydrolyzing angiotensin I (Ang I) and bradykinin. Here we investigated the effect of the selective C-domain and N-domain inhibitors RXPA380 and RXP407 on Ang I-induced vasoconstriction of porcine femoral arteries (PFAs) and bradykinin-induced vasodilation of preconstricted porcine coronary microarteries (PCMAs). Ang I concentration-dependently constricted PFAs. RXPA380, at concentrations >1 mumol/L, shifted the Ang I concentration-response curve (CRC) 10-fold to the right. This was comparable to the maximal shift observed with the ACE inhibitors (ACEi) quinaprilat and captopril. RXP407 did not affect Ang I at concentrations < or =0.1 mmol/L. Bradykinin concentration-dependently relaxed PCMAs. RXPA380 (10 micromol/L) and RXP407 (0.1 mmol/L) potentiated bradykinin, both inducing a leftward shift of the bradykinin CRC that equaled approximately 50% of the maximal shift observed with quinaprilat. Ang I added to blood plasma disappeared with a half life (t(1/2)) of 42+/-3 minutes. Quinaprilat increased the t(1/2) approximately 4-fold, indicating that 71+/-6% of Ang I metabolism was attributable to ACE. RXPA380 (10 micromol/L) and RXP407 (0.1 mmol/L) increased the t(1/2) approximately 2-fold, thereby suggesting that both domains contribute to conversion in plasma. In conclusion, tissue Ang I-II conversion depends exclusively on the ACE C-domain, whereas both domains contribute to conversion by soluble ACE and to bradykinin degradation at tissue sites. Because tissue ACE (and not plasma ACE) determines the hypertensive effects of Ang I, these data not only explain why N-domain inhibition does not affect Ang I-induced vasoconstriction in vivo but also why ACEi exert blood pressure-independent effects at low (C-domain-blocking) doses.

Download full-text

Full-text

Available from: Joep van Esch, Jul 06, 2015
0 Followers
 · 
104 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: ETHNOPHARMACOLOGICAL RELEVANCE: Onopordon acanthium (also known as Scotch thistle) is a medicinal plant of the Asteraceae family that is widely distributed in Europe and Asia. This plant has been long used in traditional medicine as a hypotensive, cardiotonic and diuretic agent. AIM OF THE STUDY: The present study is designed to isolate an active compound with ACE inhibition activity from O. acanthium, measure antioxidant activity, predict domain specificity and pharmacokinetic properties of the isolated compound. MATERIALS AND METHODS: Methanolic extract of O. acanthium seeds, has been subjected to a repeated column chromatography to give a pure compound with Angiotensin Converting Enzyme (ACE) inhibition activity. The ACE inhibition activity was determined using hippuryl-L-histidyl-L-leucine (HHL) as substrate in an in vitro ACE assay. Structure of the pure compound, isolated from O. acanthium has been established by spectroscopic methods, including Infrared (IR), Nuclear Magnetic Resonance (NMR) and Mass spectrum analysis. In addition, antioxidant activity of the new isolated compound, was measured using 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay and compared with those of BHT and Trolox as positive controls. Enzyme type inhibition and ACE-C or N domain specificity of the new compound was further evaluated through molecular modeling and docking studies. RESULTS: Structure of the pure compound, isolated from O. acanthium (83±1% ACE inhibition activity at concentration of 330μg/ml), has been established. The isolated compound possessed acceptable antioxidant activity (IC50 value of 2.6±0.04μg/ml) in comparison with BHT (IC50 value of 10.3±0.15μg/ml) and Trolox (IC50 value of 3.2±0.06μg/ml). Molecular docking predicted competitive type enzyme inhibition and approximately similar affinity of the isolated compound for ACE-C and N domains. CONCLUSION: The results derived from computational and in vitro experiments, confirm the potential of the isolated compound, from O. acanthium as a new antihypertensive compound and give additional scientific support to an anecdotal use of O. acanthium in traditional medicine to treat cardiovascular disease such as hypertension.
    Journal of ethnopharmacology 06/2013; 148(3). DOI:10.1016/j.jep.2013.05.046 · 2.94 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Vasoconstriction to agonists at serotonin (5-hydroxytryptamine; 5-HT) receptors and alpha-adrenoceptors, as well as vasodilatation induced by alpha-CGRP, have been well described in the porcine carotid circulation in vivo. The present study sets out to investigate the effects of current and prospective antimigraine drugs on porcine meningeal artery segments in vitro. Sumatriptan, ergotamine, dihydroergotamine, isometheptene and clonidine failed to contract the meningeal artery, but 5-HT, noradrenaline and phenylephrine induced concentration-dependent contractions. The contractions to 5-HT were competitively antagonized by the 5-HT(2A) receptor antagonist ketanserin, whilst those to noradrenaline were antagonized by alpha(1)-(prazosin), alpha(2)-(rauwolscine and yohimbine) and alpha(2C/2B)-(OPC-28326) adrenoceptor antagonists. Whilst dobutamine and salbutamol were ineffective, alpha-CGRP produced concentration-dependent relaxations that were antagonized by the CGRP(1) receptor antagonist olcegepant. In agreement with their lack of contractile effect, sumatriptan and ergotamine failed to influence forskolin-stimulated cyclic AMP accumulation in the porcine meningeal artery; in contrast, both compounds decreased forskolin-stimulated cyclic AMP accumulation in the human isolated saphenous vein, where they induced contractions. Finally, using RT-PCR, we could demonstrate the presence of mRNAs encoding for several 5-HT receptors (5-HT(1B), 5-HT(1D), 5-HT(1F), 5-HT(2A) and 5-HT(7)) and adrenoceptors (alpha(1A), alpha(1B), alpha(1D), alpha(2A), alpha(2B), alpha(2C), beta(1) and beta(2)), as well as that for the calcitonin receptor like receptor, a component of the CGRP(1) receptor. These results suggest that: (i) the porcine meningeal artery may not be involved in the vasoconstriction of the carotid vascular bed elicited by antimigraine drugs in anaesthetized pigs, and (ii) the mismatch between the presence of receptor mRNA and the lack of response to sumatriptan, dobutamine and salbutamol implies that mRNAs for the 5-HT(1B) receptor and beta(1)- and beta(2)-adrenoceptors are probably unstable, or that their density is too low for being translated as receptor protein in sufficient quantities.
    Archiv für Experimentelle Pathologie und Pharmakologie 01/2007; 374(3):163-75. DOI:10.1007/s00210-006-0108-8 · 2.36 Impact Factor