Article

Decreased EEG synchronization in Alzheimer's disease and mild cognitive impairment.

Department of Psychiatric Neurophysiology, University Hospital of Clinical Psychiatry, Bolligenstrasse 111, CH-3000 Berne 60, Switzerland.
Neurobiology of Aging (Impact Factor: 4.85). 03/2005; 26(2):165-71. DOI: 10.1016/j.neurobiolaging.2004.03.008
Source: PubMed

ABSTRACT The hypothesis of a functional disconnection of neuro-cognitive networks in patients with mild cognitive impairment (MCI) and Alzheimer Dementia was investigated using baseline resting EEG data. EEG databases from New York (264 subjects) and Stockholm (155 subjects), including healthy controls and patients with varying degrees of cognitive decline or Alzheimer Dementia were analyzed using Global Field Synchronization (GFS), a novel measure of global EEG synchronization. GFS reflects the global amount of phase-locked activity at a given frequency by a single number; it is independent of the recording reference and of implicit source models. Patients showed decreased GFS values in Alpha, Beta, and Gamma frequency bands, and increased GFS values in the Delta band, confirming the hypothesized disconnection syndrome. The results are discussed within the framework of current knowledge about the functional significance of the affected frequency bands.

0 Bookmarks
 · 
88 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) are important tools in cognitive and clinical neuroscience. Combined EEG–fMRI has been shown to help to characterise brain networks involved in epileptic activity, as well as in different sensory, motor and cognitive functions. A good understanding of the electrophysiological correlates of the blood oxygen level-dependent (BOLD) signal is necessary to interpret fMRI maps, particularly when obtained in combination with EEG. We review the current understanding of electrophysiological–haemodynamic correlates, during different types of brain activity. We start by describing the basic mechanisms underlying EEG and BOLD signals and proceed by reviewing EEG-informed fMRI studies using fMRI to map specific EEG phenomena over the entire brain (EEG–fMRI mapping), or exploring a range of EEG-derived quantities to determine which best explain colocalised BOLD fluctuations (local EEG–fMRI coupling). While reviewing studies of different forms of brain activity (epileptic and nonepileptic spontaneous activity; cognitive, sensory and motor functions), a significant attention is given to epilepsy because the investigation of its haemodynamic correlates is the most common application of EEG-informed fMRI. Our review is focused on EEG-informed fMRI, an asymmetric approach of data integration. We give special attention to the invasiveness of electrophysiological measurements and the simultaneity of multimodal acquisitions because these methodological aspects determine the nature of the conclusions that can be drawn from EEG-informed fMRI studies. We emphasise the advantages of, and need for, simultaneous intracranial EEG–fMRI studies in humans, which recently became available and hold great potential to improve our understanding of the electrophysiological correlates of BOLD fluctuations. Hum Brain Mapp, 2014. © 2014 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.
    Human Brain Mapping 10/2014; · 6.92 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Electroencephalography (EEG) is a longstanding technique to measure electrical brain activity and thereby an indirect measure of synaptic activity. Synaptic dysfunction accompanies Alzheimer’s disease (AD) and EEG can be regarded as a potentially useful biomarker in this disease. Lately, emerging analysis techniques of time series have become available for EEG, such as functional connectivity and network analysis, which have increased the possibilities for use in AD clinical trials. In this review, we report the EEG changes in the course of AD, including slowing of the EEG oscillations, decreased functional connectivity in the higher-frequency bands, and decline in optimal functional network organization. We discuss the use of EEG in clinical trials and provide directions for future research.
    Alzheimer's Research and Therapy 12/2014; 6(9). · 3.50 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In Parkinson's disease (PD), internal cueing mechanisms are impaired leading to symptoms like hypokinesia. However, external cues can improve movement execution by using cortical resources. These cortical processes can be affected by cognitive decline in dementia. It is still unclear how dementia in PD influences external cueing. We investigated a group of 25 PD patients with dementia (PDD) and 25 non-demented PD patients (PDnD) matched by age, sex, and disease duration in a simple reaction time task using an additional acoustic cue. PDD patients benefited from the additional cue in similar magnitude as did PDnD patients. However, withdrawal of the cue led to a significantly increased reaction time in the PDD group compared to the PDnD patients. Our results indicate that even PDD patients can benefit from strategies using external cue presentation but the process of cognitive worsening can reduce the effect when cues are withdrawn.
    Frontiers in neurology. 01/2014; 5:236.