Article

The utility of megavoltage computed tomography images from a helical tomotherapy system for setup verification purposes.

Department of Human Oncology, University of Wisconsin, Madison, WI, USA.
International Journal of Radiation OncologyBiologyPhysics (Impact Factor: 4.18). 01/2005; 60(5):1639-44. DOI: 10.1016/j.ijrobp.2004.08.016
Source: PubMed

ABSTRACT To evaluate the utility of relatively low-dose megavoltage computed tomography (MVCT) images from a clinical helical tomotherapy system for setup verification purposes.
Cross-sectional kilovolt computed tomography (kVCT) images were obtained for treatment planning purposes on a diagnostic third-generation CT scanner, followed by MVCT images from a helical tomotherapy system in 8 pet dogs with spontaneously occurring tumors. The kVCT and MVCT images were aligned for setup verification purposes, allowing repositioning before treatment delivery.
Tumors are readily visualized on the MVCT images. At a dose of 2-3 cGy, the MVCT images are of sufficient quality for verification of treatment setup, but soft-tissue contrast is inferior to that with conventional kVCT. The MV and kVCT images were successfully aligned. When necessary, patients undergoing helical tomotherapy were repositioned before treatment.
Megavoltage CT image quality is sufficient for tumor identification and three-dimensional setup verification in dogs with spontaneous tumors. The MVCT images can be aligned with the planning kVCT to ensure proper patient registration before treatment. Image alignment was successful in these canine patients, despite no skin markings defining patient positioning between the two scans. MVCT images facilitate setup verification, and their tomographic nature offers improvements over conventional portal imaging.

0 Bookmarks
 · 
138 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: As rigid image registration becomes unreliable in the presence of involuntary organ motion, we present a novel approach to register CT images using stable bony landmarks for image-guided patient setup. Using 3D Volumetric Image Registration (3DVIR) technique, bony anatomy is volumetrically-classified as registration landmark, while soft tissues are ignored. Based on 4DCT, it was found that the spine, posterior ribs and clavicles do not move with respiration and remain registered throughout the breathing cycle. However, mutual information based registration produces an error of 1-2 mm due to moving soft tissues. It is suggested that the 3DVIR can improve image-guided setup.
    International Journal of Biomedical Engineering and Technology 01/2012; 8(2/3):259 - 273.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Helical Tomotherapy is an innovative means of delivering intensity modulated radiation therapy (IMRT) using a device that merges features of a linear accelerator and helical computed tomography (CT) scanner. Hereat, during helical tomotherapy process, megavoltage computed tomography (MVCT) image are usually used for guiding the precise set-up of patient before/after treatment delivery. But which would certainly increase the total dose for patients, this study was to investigate the imaging dose of MVCT using the cylindrical "Cheese" phantom on a tomotherapy machine. A set of cylindrical "Cheese" phantom was adopted for scanning with respectively pitch value (1, 2, 3 mm) with same number slice (10 slice), same length (approximately 9 cm) and phantom set-ups on the couch of tomotherapy system. The average MVCT imaging dose were measured using A1SL ion chamber inserted in the phantom with preset geometry. The MVCT scanning average dose for the cylindrical "Cheese" phantom was 2.24 cGy, 1.02 cGy, 0.81 cGy during respectively pitch value (pitch 1, 2, 3 mm) with same number slice (10 slice), and same length's average dose was 2.47 cGy, 1.28 cGy, 0.88 cGy respectively (pitch 1, 2, 3 mm). Two major parameters, the assigned pitch numbers and scanning length, where the most important impacts to the dose variation. The MVCT dose was inversely proportional to the CT pitch value. The results may provide a reliable guidance for proper planning design of the scanning region, which is valuable to help minimize the extra dose to patient. Questionnaires were distributed to Radiology departments at hospitals with 300 sickbeds throughout the Pohang region of North Gyeongsang Province concerning awareness and performance levels of infection control. The investigation included measurements of the pollution levels of imaging equipment and assistive apparatuses in order to prepare a plan for the activation of prevention and management of hospital infections. The survey was designed to question respondents in regards to personal data, infection management prevention education, and infection management guidelines.
    Journal of the Korean Society of Radiology. 04/2013; 7(2).
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Purpose: The overall aim was to conduct an analytical study of the impact of the modulation factor (MF) on the quality of the head and neck treatment plans and their execution time on Tomotherapy. Materials and Methods: In-phantom (RANDO® Alderson) planning study of the head and neck cancer was performed. Thirteen different plans in terms of MF were prepared. Other optimization parameters were the same for all plans. Results: Analysis of treatment plans in terms of quality shows that MF < 1.4 does not provide an accepted dose distribution (physician decision). Statistically significant differences were observed for plans with an MF < 1.6. No differences were obtained for plans with MF from 6.0 to 1.8. Decreasing of MF leads to a shorter time of irradiation. The maximum rotational speed has been reached for an MF = 3.0. Further reducing this however produces no decrease in the time of irradiation. The actual and planned values of the MF were compared. The optimal range of MF for head and neck was determined as 3.0 > MF > 1.8. The lower limit increases to 2.4 when hard reduction of the dose in critical organs is required. Conclusions: It was showed that the final MF value is less than the value calculated after each loop of optimization. The computer system reduces MF by shortening the longest time and increasing the average time of leaves opening. Increase in the average time is obtained by eliminating the use of leafs with the shortest times of opening, thereby reducing the dose in critical organs that are outside the direct irradiation area.
    Journal of cancer research and therapeutics 12/2013; 9(4):618-23. · 0.95 Impact Factor