Western diet modulates insulin signaling, c-Jun N-terminal kinase activity, and insulin receptor substrate-1ser307 phosphorylation in a tissue-specific fashion.

Departamento de Clínica Médica da Universidade Estadual de Campinos, Campinas, São Paulo 13083-970, Brazil.
Endocrinology (Impact Factor: 4.64). 04/2005; 146(3):1576-87. DOI: 10.1210/en.2004-0767
Source: PubMed

ABSTRACT The mechanisms by which diet-induced obesity is associated with insulin resistance are not well established, and no study has until now integrated, in a temporal manner, functional insulin action data with insulin signaling in key insulin-sensitive tissues, including the hypothalamus. In this study, we evaluated the regulation of insulin sensitivity by hyperinsulinemic-euglycemic clamp procedures and insulin signaling, c-jun N-terminal kinase (JNK) activation and insulin receptor substrate (IRS)-1(ser307) phosphorylation in liver, muscle, adipose tissue, and hypothalamus, by immunoprecipitation and immunoblotting, in rats fed on a Western diet (WD) or control diet for 10 or 30 d. WD increased visceral adiposity, serum triacylglycerol, and insulin levels and reduced whole-body glucose use. After 10 d of WD (WD10) there was a decrease in IRS-1/phosphatidylinositol 3-kinase/protein kinase B pathway in hypothalamus and muscle, associated with an attenuation of the anorexigenic effect of insulin in the former and reduced glucose transport in the latter. In WD10, there was an increased glucose transport in adipose tissue in parallel to increased insulin signaling in this tissue. After 30 d of WD, insulin was less effective in suppressing hepatic glucose production, and this was associated with a decrease in insulin signaling in the liver. JNK activity and IRS-1(ser307) phosphorylation were higher in insulin-resistant tissues. In summary, the insulin resistance induced by WD is tissue specific and installs first in hypothalamus and muscle and later in liver, accompanied by activation of JNK and IRS-1(ser307) phosphorylation. The impairment of the insulin signaling in these tissues, but not in adipose tissue, may lead to increased adiposity and insulin resistance in the WD rats.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Hypothalamic inflammation is a common feature of experimental obesity. Dietary fats are important triggers of this process inducing the activation of toll-like receptor-4 signaling and endoplasmic reticulum stress. Microglia cells, which are the cellular components of the innate immune system in the brain, are expected to play a role in the early activation of diet-induced hypothalamic inflammation. Here, we use bone marrow transplants to generate mice chimeras that express a functional TLR4 in the entire body except in bone marrow-derived cells or only in bone marrow-derived cells. We show that a functional TLR4 in bone marrow-derived cells is required for the complete expression of the diet-induced obese phenotype and for the perpetuation of inflammation in the hypothalamus. In an obesity-prone mouse strain, the chemokine CX3CL1 (fractalkine) is rapidly induced in the neurons of the hypothalamus following the introduction of a high-fat diet. The inhibition of hypothalamic fractalkine reduces diet-induced hypothalamic inflammation and the recruitment of bone marrow-derived monocytic cells to the hypothalamus; in addition, this inhibition reduces obesity and protects against diet-induced glucose intolerance. Thus, fractalkine is an important player in the early induction of diet-induced hypothalamic inflammation, and its inhibition impairs the induction of the obese and glucose-intolerance phenotypes.
    Diabetes 06/2014; · 7.90 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background From their initial, accidental discovery 50 years ago, the highly conserved Heat Shock Proteins (HSPs) continue to exhibit fundamental roles in the protection of cell integrity. Meanwhile, in the midst of an obesity epidemic, research demonstrates a key involvement of low grade inflammation, and mitochondrial dysfunction amongst other mechanisms, in the pathology of insulin resistance and type 2 diabetes mellitus (T2DM). In particular, tumour necrosis factor alpha (TNFα), endoplasmic reticulum (ER) and oxidative stress all appear to be associated with obesity and stimulate inflammatory kinases such as c jun amino terminal kinase (JNK), inhibitor of NF-κβ kinase (IKK) and protein kinase C (PKC) which in turn, inhibit insulin signalling. Mitochondrial dysfunction in skeletal muscle has also been proposed to be prominent in the pathogenesis of T2DM either by reducing the ability to oxidize fatty acids, leading to the accumulation of deleterious lipid species in peripheral tissues such as skeletal muscle and liver, or by altering the cellular redox state. Since HSPs act as molecular chaperones and demonstrate crucial protective functions in stressed cells, we and others have postulated that the manipulation of HSP expression in metabolically relevant tissues represents a therapeutic avenue for obesity-induced insulin resistance. Scope of Review This review summarises the literature from both animal and human studies, that has examined how HSPs, particularly the inducible HSP, Heat Shock Protein 72 (Hsp72) alters glucose homeostasis and the possible approaches to modulating Hsp72 expression. A summation of the role of chemical chaperones in metabolic disorders is also included. Major Conclusions Targeted manipulation of Hsp72 or use of chemical chaperiones may have clinical utility in treating metabolic disorders such as insulin resistance and T2DM.
    Molecular Metabolism. 08/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In both human and experimental obesity, inflammatory damage to the hypothalamus plays an important role in the loss of the coordinated control of food intake and energy expenditure. Upon prolonged maintenance of increased body mass, the brain changes the defended set-point of adiposity, and returning to normal weight becomes extremely difficult. Here, we show that in prolonged but not in short-term obesity, the ubiquitin/proteasome system in the hypothalamus fails to maintain an adequate rate of protein recycling, leading to the accumulation of ubiquitinated proteins. This is accompanied by increased co-localization of ubiquitin and p62 in the arcuate nucleus and reduced expression of autophagy markers in the hypothalamus. Genetic protection from obesity is accompanied by the normal regulation of the ubiquitin/proteasome system in the hypothalamus, while inhibition of proteasome or p62 results in the acceleration of body mass gain in mice exposed for a short period to a high-fat diet. Thus, the defective regulation of the ubiquitin/proteasome system in the hypothalamus may be an important mechanism involved in the progression and auto-perpetuation of obesity.
    Endocrinology 06/2014; · 4.64 Impact Factor

Full-text (2 Sources)

Available from
Jul 24, 2014