Article

The unique stacked rings in the nucleocapsid of the white spot syndrome virus virion are formed by the major structural protein VP664, the largest viral structural protein ever found.

Institute of Zoology, National Taiwan University, Taipei, Taiwan, Republic of China.
Journal of Virology (Impact Factor: 4.65). 02/2005; 79(1):140-9. DOI: 10.1128/JVI.79.1.140-149.2005
Source: PubMed

ABSTRACT One unique feature of the shrimp white spot syndrome virus (WSSV) genome is the presence of a giant open reading frame (ORF) of 18,234 nucleotides that encodes a long polypeptide of 6,077 amino acids with a hitherto unknown function. In the present study, by applying proteomic methodology to analyze the sodium dodecyl sulfate-polyacrylamide gel electrophoresis profile of purified WSSV virions by liquid chromatography-mass spectrometry (LC-MS/MS), we found that this giant polypeptide, designated VP664, is one of the viral structural proteins. The existence of the corresponding 18-kb transcript was confirmed by sequencing analysis of reverse transcription-PCR products, which also showed that vp664 was intron-less. A time course analysis showed that this transcript was actively transcribed at the late stage, suggesting that this gene product should contribute primarily to the assembly and morphogenesis of the virion. Several polyclonal antisera against this giant protein were prepared, and one of them was successfully used for immunoelectron microscopy analysis to localize the protein in the virion. Immunoelectron microscopy with a gold-labeled secondary antibody showed that the gold particles were regularly distributed around the periphery of the nucleocapsid with a periodicity that matched the characteristic stacked ring subunits that appear as striations. From this and other evidence, we argue that this giant ORF in fact encodes the major WSSV nucleocapsid protein.

Full-text

Available from: Jiann-Horng Leu, Feb 05, 2014
0 Followers
 · 
79 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Since it first appeared in 1992, white spot syndrome virus (WSSV) has become the most threatening infectious agent in shrimp aquaculture. Within a decade, this pathogen has spread to all the main shrimp farming areas and has caused enormous economic losses amounting to more than seven billion US dollars. At present, biosecurity methods used to exclude pathogens in shrimp farms include disinfecting ponds and water, preventing the entrance of animals that may carry infectious agents and stocking ponds with specific pathogen-free post-larvae. The combination of these practices increases biosecurity in shrimp farming facilities and may contribute to reduce the risk of a WSSV outbreak. Although several control methods have shown some efficacy against WSSV under experimental conditions, no therapeutic products or strategies are available to effectively control WSSV in the field. Furthermore, differences in virulence and clinical outcome of WSSV infections have been reported. The sequencing and characterization of different strains of WSSV has begun to determine aspects of its biology, virulence and pathogenesis. Knowledge on these aspects is critical for developing effective control methods. The aim of this review is to present an update of the knowledge generated so far on different aspects of WSSV organization, morphogenesis, pathology and pathogenesis.
    Journal of Fish Diseases 02/2008; 31(1):1-18. DOI:10.1111/j.1365-2761.2007.00877.x · 1.51 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: White spot syndrome virus (WSSV) is a major disease in crustaceans, particularly shrimp, due to the current intensity of aquaculture practices. Novel strategies including vaccination to control this virus would be highly desirable. However, invertebrates lack a true adaptive immune response system and seem to rely on various innate immune responses. An alternative and more specific approach to counteract WSSV infections in shrimp could be by the exploitation of RNA interference. As long dsRNA molecules induce a general, sequence-independent anti-viral immunity in shrimp [Robalino, J., Browdy, C.L., Prior, S., Metz, A., Parnell, P., Gross, P., Warr, G., 2004. J. Virol. 78, 10442-10448], it was investigated whether shorter 21 nt siRNAs with homology to the WSSV vp15 and vp28 genes would give a sequence-specific interference response in the shrimp Penaeus monodon. Vp28 siRNAs as well as nonspecific control gfp siRNAs were able to specifically and efficiently silence their homologous genes in a heterologous baculovirus insect cell expression system. However, in shrimps no such a specific effect was observed. Shrimp injected with vp15 or vp28 siRNAs before WSSV challenge gave a significantly lower mortality rate, but not significantly different when shrimps were injected with gfp siRNA. Thus, large dsRNA molecules as well as siRNAs induce a sequence-independent anti-viral immunity when injected in shrimp.
    Virus Research 01/2006; 114(1-2):133-9. DOI:10.1016/j.virusres.2005.06.006 · 2.83 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Summary can be found at the end of the PhD thesis
    01/2007, Degree: PhD, Supervisor: Hans J. Nauwynck