Article

Identification of an extremely thermostable enzyme with dual sugar-1-phosphate nucleotidylyltransferase activities from an acidothermophilic archaeon, Sulfolobus tokodaii strain 7.

National Institute of Advanced Industrial Science and Technology, Higashi 1-1-1, Tsukuba, Ibaraki 305-8566, Japan.
Journal of Biological Chemistry (Impact Factor: 4.65). 04/2005; 280(10):9698-705. DOI: 10.1074/jbc.M411211200
Source: PubMed

ABSTRACT L-rhamnose is an essential component of the cell wall and plays roles in mediating virulence and adhesion to host tissues in many microorganisms. Glucose-1-phosphate thymidylyltransferase (RmlA, EC 2.7.7.24) catalyzes the first reaction of the four-step pathway of L-rhamnose biosynthesis, producing dTDP-D-glucose from dTTP and glucose-1-phosphate. Three RmlA homologues of varying size have been identified in the genome of a thermophilic archaeon, Sulfolobus tokodaii strain 7. In this study, we report the heterologous expression of the largest homologue (a 401 residue-long ST0452 protein) and characterization of its thermostable activity. RmlA enzymatic activity of this protein was detected from 65 to 100 degrees C, with a half-life of 60 min at 95 degrees C and 180 min at 80 degrees C. Analysis of a deletion mutant lacking the 170-residue C-terminal domain indicated that this region has an important role in the thermostability and activity of the protein. Analyses of substrate specificity indicated that the enzymatic activity of the full-length protein is capable of utilizing alpha-D-glucose-1-phosphate and N-acetyl-D-glucosamine-1-phosphate but not alpha-D-glucosamine-1-phosphate. However, the protein is capable of utilizing all four deoxyribonucleoside triphosphates and UTP. Thus, the ST0452 protein is an enzyme containing both glucose-1-phosphate thymidylyltransferase and N-acetyl-D-glucosamine-1-phosphate uridylyltransferase activities. This is the first report of a thermostable enzyme with dual sugar-1-phosphate nucleotidylyltransferase activities.

0 Bookmarks
 · 
49 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Thymidylyltransferases (thymidine diphospho pyrophosphorylases) are nucleotidylyltransferases that play key roles in the biosynthesis of carbohydrate components within bacterial cell walls and in the biosynthesis of glycosylated natural products. They catalyze the formation of sugar nucleotides concomitant with the release of pyrophosphate. Protein engineering of thymidylyltransferases has been an approach for the production of a variety of non-physiological sugar nucleotides. In this work, we have explored chemical approaches towards modifying the activity of the thymidylyltransferase (Cps2L) cloned from S. pneumoniae, through the use of chemically synthesized 'activated' nucleoside triphosphates with enhanced leaving groups, or by switching the metal ion co-factor specificity. Within a series of phosphonate-containing nucleoside triphosphate analogues, thymidylyltransferase activity is enhanced based on the acidity of the leaving group and a Brønsted-type analysis indicated that leaving group departure is rate limiting. We have also determined IC50 values for a series of bisphosphonates as inhibitors of thymidylyltransferases. No correlation between the acidity of the inhibitors (pKa) and the magnitude of enzyme inhibition was found.
    Organic & Biomolecular Chemistry 07/2013; · 3.57 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Two similar genes, dnmL and rmbA in Streptomyces peucetius, which encode for glucose-1-phosphate (G-1-P) thymidylyltransferases were expressed in Escherichia coli under similar conditions. While RmbA was expressed in soluble form, DnmL was found as insoluble aggregates in inclusion bodies. The difference in expression of these similar proteins led to investigate into the amino acid sequences of these proteins by sequence alignment, hydrophobicity scale and homology modeling. These analyses showed that the two proteins are different only in the C-terminal sequences. Deletion of C-terminal sequence of DnmL increased the expression level of truncated DnmL. Substitution of C-terminal sequence of DnmL with RmbA also expressed the recombinant protein in soluble form. Finally, mutation of six amino acids in DnmL rendered the protein expressed in soluble form. These results suggested that the soluble expression of the thymidylyltransferases lies in the C-terminal sequences. In conclusion, these methods of protein engineering will be a rational tool for enhancing solubility of proteins expressed in E.coli.
    Protein Engineering Design and Selection 02/2012; 25(4):179-87. · 2.59 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In the halophilic archaea Haloferax volcanii, the surface (S)-layer glycoprotein can be modified by two distinct N-linked glycans. The tetrasaccharide attached to S-layer glycoprotein Asn-498 comprises a sulfated hexose, two hexoses and a rhamnose. While Agl11-14 have been implicated in the appearance of the terminal rhamnose subunit, the precise roles of these proteins have yet to be defined. Accordingly, a series of in vitro assays conducted with purified Agl11-Agl14 showed these proteins to catalyze the stepwise conversion of glucose-1-phosphate to dTDP-rhamnose, the final sugar of the tetrasaccharide glycan. Specifically, Agl11 is a glucose-1-phosphate thymidylyltransferase, Agl12 is a dTDP-glucose-4,6-dehydratase and Agl13 is a dTDP-4-dehydro-6-deoxy-glucose-3,5-epimerase, while Agl14 is a dTDP-4-dehydrorhamnose reductase. Archaea thus synthesize nucleotide-activated rhamnose by a pathway similar to that employed by Bacteria and distinct from that used by Eukarya and viruses. Moreover, a bioinformatics screen identified homologues of agl11-14 clustered in other archaeal genomes, often as part of an extended gene cluster also containing aglB, encoding the archaeal oligosaccharyltransferase. This points to rhamnose as being a component of N-linked glycans in Archaea other than Hfx. volcanii.
    PLoS ONE 01/2014; 9(5):e97441. · 3.73 Impact Factor