Dechlorination of trichloroethylene in aqueous solution by noble metal-modified iron.

Graduate Institute of Environmental Engineering, National Taiwan University, 71 Chou-Shan Road, Taipei 106, Taiwan.
Journal of Hazardous Materials (Impact Factor: 3.93). 12/2004; 116(3):219-28. DOI: 10.1016/j.jhazmat.2004.09.005
Source: PubMed

ABSTRACT Bimetallic particles are extremely interesting in accelerating the dechlorination of chlorinated organics. Four noble metals (Pd, Pt, Ru and Au), separately deposited onto the iron surface through a spontaneous redox process, promoted the TCE dechlorination rate, and the catalytic activity of the noble metal followed the order of Pd>Ru>Pt>Au. This order was found to be dependent on the concentrations of adsorbed atomic hydrogen, indicating that the initial reaction was cathodically controlled. Little difference in the distribution of the chlorinated products for the four catalysts (cis-DCE: 51%; 1,1-DCE: 27%; trans-DCE: 15% and VC: 7%) was observed. The chlorinated by-products accumulated in both Pt/Fe and Au/Fe (10.3% and 2.5% of the transformed TCE, respectively), but did not accumulate in Pd/Fe and Ru/Fe. Ru/Fe was further examined as an economical alternative to Pd/Fe. The 1.5% Ru/Fe was found to completely degrade TCE within 80 min. Considering the expense, the yield of chlorinated products and the lifetime of a reductive material, Ru provides a potential alternative to Pd as a catalyst in practical applications.

  • [Show abstract] [Hide abstract]
    ABSTRACT: The purpose of this study was to investigate the potential of copper-iron bimetallic particles supported sulfate-reducing bacteria (SRB) in enhancing the reduction of Cu(2+) and Zn(2+) in effluent. The results showed that the copper-iron bimetallic particles can enhance Cu(2+) and Zn(2+) removal and the resistance of the sulfate-reducing bacteria towards metals toxicity, the inhibiting concentration of Cu(2+) and Zn(2+) for SRB was significantly increased (from 100 to 200mg/L for Cu(2+) and 300 to 400mg/L for Zn(2+)). The removal efficiencies of Cu(2+) and Zn(2+) (initial concentration 100mg/L) were 98.17% and 99.67% in SRB-Cu/Fe system after 48h, while only 29.83% Cu(2+), 90.88% Zn(2+) and 63.81% Cu(2+), 72.63% Zn(2+) were removed in the SRB and Cu/Fe system at the same condition.
    Bioresource Technology 03/2013; 136C:413-417. · 4.75 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Effective electrode materials are critical to electrochemical reduction, which is a promising method to pre-treat anti-oxidative and bio-refractory wastewater. Herein, nitrogen-doped diamond (NDD) electrodes that possess superior electrocatalytic properties for reduction were fabricated by microwave-plasma-enhanced chemical vapor deposition technology. Nitrobenzene (NB) was chosen as the probe compound to investigate the material's electro-reduction activity. The effects of potential, electrolyte concentration and pH on NB reduction and aniline (AN) formation efficiencies were studied. NDD exhibited high electrocatalytic activity and selectivity for reduction of NB to AN. The NB removal efficiency and AN formation efficiency were 96.5% and 88.4% under optimal conditions, respectively; these values were 1.13 and 3.38 times higher than those of graphite electrodes. Coulombic efficiencies for NB removal and AN formation were 27.7% and 26.1%, respectively; these values were 4.70 and 16.6 times higher than those of graphite electrodes under identical conditions. LC-MS analysis revealed that the dominant reduction pathway on the NDD electrode was NB to phenylhydroxylamine (PHA) to AN.
    Journal of hazardous materials 12/2013; 265C:185-190. · 4.14 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The feasibility of using granular ferric hydroxide (GFH) with zero-valent iron (Fe(0)) for its potential utility in enhancing nitrate reduction was investigated. The addition of 10gL(-1) GFH to 25gL(-1) Fe(0) significantly enhanced nitrate removal, resulting in 93% removal of 52.2mg-NL(-1) in 36-h as compared to 23% removal with Fe(0) alone. Surface analyses of the reacted Fe(0)/GFH revealed the presence of magnetite on the Fe(0) surface, which probably served as an electron mediator for nitrate reduction. Addition of GFH to Fe(0) also resulted in lower solution pH compared to Fe(0). The rate enhancing effect of GFH on nitrate reduction was attributed to the combined effects of magnetite formation and pH buffering by GFH. GFH amendment (100gL(-1)) significantly increased reduction capacity and longevity of Fe(0) to complete several nitrate reduction cycles before inactivation, giving a total nitrate removal of 205mg-NL(-1), while unamended Fe(0) gave only 20mg-NL(-1) before inactivation during the first reduction cycle. The overall result demonstrated the potential utility of Fe(0)/GFH system that may be developed into a viable technology for removal of nitrate from groundwater.
    Chemosphere 10/2013; · 3.14 Impact Factor

Full-text (2 Sources)

Available from
May 29, 2014