Article

Default-mode activity during a passive sensory task: uncoupled from deactivation but impacting activation.

Department of Neurology, Stanford University School of Medicine, CA 94301-5719, USA.
Journal of Cognitive Neuroscience (Impact Factor: 4.49). 12/2004; 16(9):1484-92. DOI: 10.1162/0898929042568532
Source: PubMed

ABSTRACT Deactivation refers to increased neural activity during low-demand tasks or rest compared with high-demand tasks. Several groups have reported that a particular set of brain regions, including the posterior cingulate cortex and the medial prefrontal cortex, among others, is consistently deactivated. Taken together, these typically deactivated brain regions appear to constitute a default-mode network of brain activity that predominates in the absence of a demanding external task. Examining a passive, block-design sensory task with a standard deactivation analysis (rest epochs vs. stimulus epochs), we demonstrate that the default-mode network is undetectable in one run and only partially detectable in a second run. Using independent component analysis, however, we were able to detect the full default-mode network in both runs and to demonstrate that, in the majority of subjects, it persisted across both rest and stimulus epochs, uncoupled from the task waveform, and so mostly undetectable as deactivation. We also replicate an earlier finding that the default-mode network includes the hippocampus suggesting that episodic memory is incorporated in default-mode cognitive processing. Furthermore, we show that the more a subject's default-mode activity was correlated with the rest epochs (and "deactivated" during stimulus epochs), the greater that subject's activation to the visual and auditory stimuli. We conclude that activity in the default-mode network may persist through both experimental and rest epochs if the experiment is not sufficiently challenging. Time-series analysis of default-mode activity provides a measure of the degree to which a task engages a subject and whether it is sufficient to interrupt the processes--presumably cognitive, internally generated, and involving episodic memory--mediated by the default-mode network.

1 Bookmark
 · 
117 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background: Neural substrates of bipolar disorder (BD) have frequently been characterized by dysregulation of fronto-limbic networks that may persist during euthymic periods. Only a few studies have investigated euthymic bipolar patients (BP) functional connectivity at rest. The current study aims to assess resting-state functional connectivity in euthymic BP in order to identify trait abnormalities responsible for enduring mood dysregulation in these patients. Methods: Medial prefrontal cortex (mPFC) functional connectivity was investigated in 20 euthymic BP and 20 healthy subjects (HS). The functional connectivity maps were compared across groups using a between-group random effect analysis. Additional region of interest (ROI) analysis focused on mPFC-amygdala functional connectivity as well as correlations between the clinical features in euthymic BP were also conducted. Results: A significant difference between euthymic BP and HS was observed in terms of connectivity between the mPFC and the right dorsolateral prefrontal cortex (dlPFC). Significant negative correlations between the activity of these regions was found in HS but not in euthymic BP. In addition, euthymic BP showed greater connectivity between mPFC and right amygdala compared to HS, which was also correlated with the duration of the disease. Limitations: The BP group was heterogeneous with respect to the bipolarity subtype and the medication. The robustness of results could be improved with an increased sample size. Conclusions: Compared to HS, the euthymic BP showed abnormal decoupling (decreased functional connectivity) activity between mPFC-dlPFC and hyperconnectivity (increased functional connectivity) between mPFC-amygdala. These abnormalities could underlie the pathophysiology of BD, and may deteriorate further in accordance with disease duration. Key-words: Bipolar disorders; Euthymic; fMRI; Resting-state; Medial prefrontal cortex.
    Journal of Affective Disorders 08/2014; 165:182-189. · 3.30 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In recent years, the study of resting state neural activity has received much attention. To better understand the roles of different brain regions in the regulation of behavioral activity in an arousing or a resting period, we developed a novel behavioral paradigm (8-arm food-foraging task; 8-arm FFT) using the radial 8-arm maze and examined how AcbC lesions affect behavioral execution and learning. Repetitive training on the 8-arm FFT facilitated motivation of normal rats to run quickly to the arm tips and to the center platform before the last-reward collection. Importantly, just after this point and before confirmation of no reward at the next arm traverse, locomotor activity decreased. This indicates that well-trained rats can predict the absence of the reward at the end of food seeking and then start another behavior, namely planned resting. Lesions of the AcbC after training selectively impaired this reduction of locomotor activity after the last-reward collection without changing activity levels before the last-reward collection. Analysis of arm-selection patterns in the lesioned animals suggests little influence of the lesion in the ability to predict the reward absence. AcbC lesions did not change exploratory locomotor activity in an open-field test in which there were no rewards. This suggests that the AcbC controls the activity level of planned resting behavior shaped by the 8-arm FFT. Rats receiving training after AcbC lesioning showed a reduction in motivation for reward seeking. Thus, the AcbC also plays important roles not only in controlling the activity level after the last-reward collection but also in motivational learning for setting the activity level of reward-seeking behavior.
    PLoS ONE 04/2014; 9(4):e95941. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The default mode network (DMN) is the core brain system supporting internally oriented cognition. The ability to attenuate the DMN when switching to externally oriented processing is a prerequisite for effective performance and adaptive self-regulation. Right anterior insula (rAI), a core hub of the salience network (SN), has been proposed to control the switching from DMN to task-relevant brain networks. Little is currently known about the extent of anticipatory processes subserved by DMN and SN during switching. We investigated anticipatory DMN and SN modulation using a novel cued-switching task of between-state (rest-to-task/task-to-rest) and within-state (task-to-task) transitions. Twenty healthy adults performed the task implemented in an event-related functional magnetic resonance imaging (fMRI) design. Increases in activity were observed in the DMN regions in response to cues signalling upcoming rest. DMN attenuation was observed for rest-to-task switch cues. Obversely, DMN was up-regulated by task-to-rest cues. The strongest rAI response was observed to rest-to-task switch cues. Task-to-task switch cues elicited smaller rAI activation, whereas no significant rAI activation occurred for task-to-rest switches. Our data provide the first evidence that DMN modulation occurs rapidly and can be elicited by short duration cues signalling rest- and task-related state switches. The role of rAI appears to be limited to certain switch types - those implicating transition from a resting state and to tasks involving active cognitive engagement.
    NeuroImage 05/2014; · 6.25 Impact Factor

Full-text

View
1 Download
Available from