Article

Nutrient availability regulates SIRT1 through a forkhead-dependent pathway.

Cardiovascular Branch, National Heart, Lung, and Blood Institute (NHLBI), Bethesda, MD 20892, USA.
Science (Impact Factor: 31.48). 01/2005; 306(5704):2105-8. DOI: 10.1126/science.1101731
Source: PubMed

ABSTRACT Nutrient availability regulates life-span in a wide range of organisms. We demonstrate that in mammalian cells, acute nutrient withdrawal simultaneously augments expression of the SIRT1 deacetylase and activates the Forkhead transcription factor Foxo3a. Knockdown of Foxo3a expression inhibited the starvation-induced increase in SIRT1 expression. Stimulation of SIRT1 transcription by Foxo3a was mediated through two p53 binding sites present in the SIRT1 promoter, and a nutrient-sensitive physical interaction was observed between Foxo3a and p53. SIRT1 expression was not induced in starved p53-deficient mice. Thus, in mammalian cells, p53, Foxo3a, and SIRT1, three proteins separately implicated in aging, constitute a nutrient-sensing pathway.

1 Follower
 · 
151 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The mammalian NAD+ dependent deacetylase, SIRT1, was shown to be a key protein in regulating glucose homeostasis, and was implicated in the response to calorie restriction. We show here that levels of SIRT1 increased in response to nutrient deprivation in cultured cells, and in multiple tissues of mice after fasting. The increase in SIRT1 levels was due to stabilization of SIRT1 protein, and not an increase in SIRT1 mRNA. In addition, p53 negatively regulated SIRT1 levels under normal growth conditions and is also required for the elevation of SIRT1 under limited nutrient conditions. These results have important implications on the relationship between sirtuins, nutrient availability and aging.
    FEBS Letters 08/2008; 582(16):2417-23. DOI:10.1016/j.febslet.2008.06.005 · 3.34 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: It is intuitive to speculate that nutrient availability may influence differentiation of mammalian cells. Nonetheless, a comprehensive complement of the molecular determinants involved in this process has not been elucidated yet. Here, we have investigated how nutrients (glucose) affect skeletal myogenesis. Glucose restriction (GR) impaired differentiation of skeletal myoblasts and was associated with activation of the AMP-activated protein kinase (AMPK). Activated AMPK was required to promote GR-induced transcription of the NAD+ biosynthetic enzyme Nampt. Indeed, GR augmented the Nampt activity, which consequently modified the intracellular [NAD+]:[NADH] ratio and nicotinamide levels, and mediated inhibition of skeletal myogenesis. Skeletal myoblasts derived from SIRT1+/- heterozygous mice were resistant to the effects of either GR or AMPK activation. These experiments reveal that AMPK, Nampt, and SIRT1 are the molecular components of a functional signaling pathway that allows skeletal muscle cells to sense and react to nutrient availability.
    Developmental Cell 06/2008; 14(5):661-73. DOI:10.1016/j.devcel.2008.02.004 · 10.37 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Intracellular energy balance is important for cell survival. In eukaryotic cells, the most energy-consuming process is ribosome biosynthesis, which adapts to changes in intracellular energy status. However, the mechanism that links energy status and ribosome biosynthesis is largely unknown. Here, we describe eNoSC, a protein complex that senses energy status and controls rRNA transcription. eNoSC contains Nucleomethylin, which binds histone H3 dimethylated Lys9 in the rDNA locus, in a complex with SIRT1 and SUV39H1. Both SIRT1 and SUV39H1 are required for energy-dependent transcriptional repression, suggesting that a change in the NAD(+)/NADH ratio induced by reduction of energy status could activate SIRT1, leading to deacetylation of histone H3 and dimethylation at Lys9 by SUV39H1, thus establishing silent chromatin in the rDNA locus. Furthermore, eNoSC promotes restoration of energy balance by limiting rRNA transcription, thus protecting cells from energy deprivation-dependent apoptosis. These findings provide key insight into the mechanisms of energy homeostasis in cells.
    Cell 06/2008; 133(4):627-39. DOI:10.1016/j.cell.2008.03.030 · 33.12 Impact Factor

Preview

Download
7 Downloads
Available from