Priority List of Research Areas for Radiological Nuclear Threat Countermeasures

Armed Forces Radiobiology Research Institute, Uniformed Services University, Bethesda, Maryland 20889-5603, USA.
Radiation Research (Impact Factor: 2.91). 02/2005; 163(1):115-23. DOI: 10.1667/RR3283
Source: PubMed

ABSTRACT To help the nation prepare for the possibility of a terrorist attack using radiological and nuclear devices, the Office of Science and Technology Policy and the Homeland Security Council established an interagency working group. The working group deliberated on the research needs for radiological/ nuclear threat countermeasures and identified and prioritized 18 areas for further attention. The highest priorities were given to research on (1) radioprotectors for use prior to exposure; (2) therapeutic agents for postexposure treatment; (3) antimicrobial therapy for infections associated with radiation exposure; (4) cytokines and growth factors; (5) mechanisms of radiation injury at the molecular, cellular, tissue and organism levels; and (6) automation of biodosimetric assays. High priority was given to (1) developing biomarkers for biodosimetry; (2) enhancing training in the radiation sciences; (3) exploring the consequences of combined injury; (4) establishing a repository of information regarding investigational countermeasures; and (5) following the health of an exposed population to better prepare for subsequent events. The research areas that the committee felt required the attention of the radiation research community are described in this report in an effort to inform this community about the needs of the nation and to encourage researchers to address these critical issues.

Download full-text


Available from: Terry Pellmar, Sep 25, 2015
24 Reads
  • Source
    • "Development of biomarker-based biodosimetry has been put forth as one of the key priority development areas for nuclear threat countermeasures [14], and microarray data/gene based profiling has served as timely and minimally invasive means to address this priority area [15]. There have been several studies examining the gene expression profiles of human cells using functional genomics platforms for photon radiation [16-18]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Background The threat of a terrorist-precipitated nuclear event places humans at danger for radiological exposures. Isotopes which emit alpha (α)-particle radiation pose the highest risk. Currently, gene expression signatures are being developed for radiation biodosimetry and triage with respect to ionizing photon radiation. This study was designed to determine if similar gene expression profiles are obtained after exposures involving α-particles. Methods Peripheral blood mononuclear cells (PBMCs) were used to identify sensitive and robust gene-based biomarkers of α-particle radiation exposure. Cells were isolated from healthy individuals and were irradiated at doses ranging from 0-1.5 Gy. Microarray technology was employed to identify transcripts that were differentially expressed relative to unirradiated cells 24 hours post-exposure. Statistical analysis identified modulated genes at each of the individual doses. Results Twenty-nine genes were common to all doses with expression levels ranging from 2-10 fold relative to control treatment group. This subset of genes was further assessed in independent complete white blood cell (WBC) populations exposed to either α-particles or X-rays using quantitative real-time PCR. This 29 gene panel was responsive in the α-particle exposed WBCs and was shown to exhibit differential fold-changes compared to X-irradiated cells, though no α-particle specific transcripts were identified. Conclusion Current gene panels for photon radiation may also be applicable for use in α-particle radiation biodosimetry.
    BMC Medical Genomics 07/2014; 7(1):43. DOI:10.1186/1755-8794-7-43 · 2.87 Impact Factor
  • Source
    • "These agents should help to treat patients and radiation victims exposed to high doses of ionizing radiation as a consequence of radiation accidents or radiological (nuclear) terrorist attacks [2] [3] [4] [5] [6]. The topic of " Therapeutic Agents (Postexposure Treatment) " has been given top priority in the Priority List of Research Areas for Radiological Nucelar Threat Countermeasures by Pellmar et al. [7]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Combined approaches to the treatment of acute radiation disease are preferred to single-agent therapies due to proven or anticipated better outcomes comprising increased therapeutic efficacy and decreased incidence of undesirable side effects. Our studies on post-exposure treatment of mice irradiated by sublethal or lethal doses of ionizing radiation included testing the effectiveness of meloxicam, a cyclooxygenase-2 inhibitor, and IB-MECA, an adenosine A3 receptor agonist. The efficacy of meloxicam and IB-MECA to positively influence the progress of the acute radiation disease has been tested in situations of their combined administration with granulocyte colony-stimulating factor (G-CSF) or with each other. The results of our studies revealed a significantly improved regeneration of hematopoietic cell populations ranging from the bone marrow progenitor cells to mature blood cells following combined treatments. Also, survival of mice exposed to lethal radiation doses was highest in the animals treated with a combination of the two drugs. It can be inferred from the results that if the drug combinations employed were used in humans, e.g. in the treatment of victims of radiation accidents, a better therapeutic outcome could be expected. Therefore, further studies directed at clinical applications of meloxicam and IB-MECA in radiation victims is recommended.
    Central European Journal of Biology 06/2014; 9(6). DOI:10.2478/s11535-014-0295-0 · 0.71 Impact Factor
  • Source
    • "Strategically, first responders and medical providers should have an array of radiation countermeasures at their disposal (Seed 2005). Developing countermeasures to ionizing radiation, both radioprotectants and mitigators, has been identified as the highest priority by the U.S. Department of Homeland Security in preparation for a terrorist attack (Pellmar and Rockwell 2005). With this in mind, considerable progress has been made in developing radiation countermeasures (Augustine et al. 2005; Hosseinimehr 2007). "
    [Show abstract] [Hide abstract]
    ABSTRACT: The authors demonstrate the efficacy of a bridging therapy in a preclinical animal model that allows the lymphohematopoietic system of severely immunocompromised individuals exposed to acute, high-dose ionizing irradiation to recover and to survive. CD2F1 mice were irradiated acutely with high doses causing severe, potentially fatal hematopoietic or gastrointestinal injuries and then transfused intravenously with progenitor-enriched, whole blood, or peripheral blood mononuclear cells from mice injected with tocopherol succinate- and AMD3100- (a chemokine receptor anatogonist used to improve the yield of mobilized progenitors). Survival of these mice over a 30-d period was used as the primary measured endpoint of therapeutic effectiveness. The authors demonstrate that tocopherol succinate and AMD3100 mobilize progenitors into peripheral circulation and that the infusion of mobilized progenitor enriched blood or mononuclear cells acts as a bridging therapy for lymphohematopoietic system recovery in mice exposed to whole-body ionizing irradiation. The results demonstrate that infusion of whole blood or blood mononuclear cells from tocopherol succinate (TS)- and AMD3100-injected mice improved the survival of mice receiving high radiation doses significantly. The efficacy of TS-injected donor mice blood or mononuclear cells was comparable to that of blood or cells obtained from mice injected with granulocyte colony-stimulating factor. Donor origin-mobilized progenitors were found to localize in various tissues. The authors suggest that tocopherol succinate is an optimal agent for mobilizing progenitors with significant therapeutic potential. The extent of progenitor mobilization that tocopherol succinate elicits in experimental mice is comparable quantitatively to clinically used drugs such as granulocyte-colony stimulating factor and AMD3100. Therefore, it is proposed that tocopherol succinate be considered for further translational development and ultimately for use in humans.
    Health physics 06/2014; 106(6):689-98. DOI:10.1097/HP.0000000000000089 · 1.27 Impact Factor
Show more