Article

Characterization of an allosteric citalopram-binding site at the serotonin transporter.

Laboratory of Molecular Neurobiology, Department of Biological Psychiatry, Aarhus Psychiatric University Hospital, Risskov, Denmark.
Journal of Neurochemistry (Impact Factor: 4.24). 02/2005; 92(1):21-8. DOI: 10.1111/j.1471-4159.2004.02835.x
Source: PubMed

ABSTRACT The serotonin transporter (SERT), which belongs to a family of sodium/chloride-dependent transporters, is the major pharmacological target in the treatment of several clinical disorders, including depression and anxiety. In the present study we show that the dissociation rate, of [3H]S-citalopram from human SERT, is retarded by the presence of serotonin, as well as by several antidepressants, when present in the dissociation buffer. Dissociation of [3H]S-citalopram from SERT is most potently inhibited by S-citalopram followed by R-citalopram, sertraline, serotonin and paroxetine. EC50 values for S- and R-citalopram are 3.6 +/- 0.4 microm and 19.4 +/- 2.3 microm, respectively. Fluoxetine, venlafaxine and duloxetine have no significant effect on the dissociation of [3H]S-citalopram. Allosteric modulation of dissociation is independent of temperature, or the presence of Na+ in the dissociation buffer. Dissociation of [3H]S-citalopram from a complex with the SERT double-mutant, N208Q/N217Q, which has been suggested to be unable to self-assemble into oligomeric complexes, is retarded to an extent similar to that found with the wild-type, raising the possibility that the allosteric mechanism is mediated within a single subunit. A species-scanning mutagenesis study comparing human and bovine SERT revealed that Met180, Tyr495 and Ser513 are important residues in mediating the allosteric effect, as well as contributing to high-affinity binding at the primary site.

0 Bookmarks
 · 
143 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To investigate the effect of escitalopram (a widely used and highly efficacious antidepressant from the SSRI class) on tau hyperphosphorylation, HEK293/tau441 cells were pretreated with 4 μM of forskolin for 2 h. Then we treated the cells with different doses of escitalopram (0, 5, 10, 20, 40, 80 μM) for 22 h. We measured the phosphorylation level of tau by Western blotting. It was shown that escitalopram could protect tau from hyperphosphorylation induced by pharmacological activation of protein kinase A (PKA) at a dose of 20, 40, and 80 μM in vitro. Interestingly, the same dose of escitalopram could also increase the level of serine-9-phosphorylated GSK-3β (inactive form) and the phosphorylation level of Akt at Ser473 (active form) with no significant change in the level of total GSK-3β and Akt. Unexpectedly, 5-hydroxytryptamine 1A receptor (5-HT1A) agonist 8-OH-DPAT did not decrease forskolin-induced tau hyperphosphorylation. Our results suggest that escitalopram can ameliorate forskolin-induced tau hyperphosphorylation, which is not through the typical 5-HT1A pathway, and Akt/GSK-3β signaling pathway is involved. These findings may support an effective role of antidepressants in the prevention of dementia associated with depression in patients.
    Journal of Molecular Neuroscience 02/2015; DOI:10.1007/s12031-015-0519-4 · 2.76 Impact Factor
  • Source
    Hormones and Behavior 01/2006; 50:572-578. · 4.51 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Insecticide resistance amongst disease vectors is a growing problem and novel compounds are needed. Biogenic amines are important for neurotransmission and we have recently shown a potential role for these in mosquito fertility. Here, we dissected the relative contribution of different aminergic signalling pathways to biological processes essential for vectorial capacity such as fertility, locomotion and survival by injecting agonists and antagonists and showed that octopaminergic/tyraminergic signalling is essential for oviposition and hatching rate. We show that egg melanisation is regulated by adrenergic signalling, whose disruption causes premature melanisation specifically through the action of tyramine. In addition to this, co-injection of tyramine with DOPA, the precursor of melanin, had a strong cumulative negative effect on mosquito locomotion and survival. Dopaminergic and serotonergic antagonists such as amitriptyline and citalopram recapitulate this effect. Together these results reveal potential new target sites for the development of future mosquito sterilants and insecticides.
    Scientific Reports 07/2014; 4:5526. DOI:10.1038/srep05526 · 5.08 Impact Factor

Full-text (2 Sources)

Download
10 Downloads
Available from
Sep 28, 2014