Juvenile zebra finches can use multiple strategies to learn the same song.

Field Research Center, The Rockefeller University, 495 Tyrrel Road, Millbrook, NY 12545, USA.
Proceedings of the National Academy of Sciences (Impact Factor: 9.81). 01/2005; 101(52):18177-82. DOI: 10.1073/pnas.0408065101
Source: PubMed

ABSTRACT Does the ontogeny of vocal imitation follow a set program that, given a target sound, unfolds in a predictable manner, or is it more like problem solving, with many possible solutions? We report that juvenile male zebra finches, Taeniopygia guttata, can master their imitation of the same song in various ways; these developmental trajectories are sensitive to the social setting in which the bird grows up. A variety of vocal developmental trajectories have also been described in infants. Are these many ways to learn unique to the vocal domain or a hallmark of advanced brain function?

  • [Show abstract] [Hide abstract]
    ABSTRACT: During song learning, vocal patterns are matched to an auditory memory acquired from a tutor, a process involving sensorimotor feedback. Song sensorimotor learning and song production of birds is controlled by a set of interconnected brain nuclei, the song control system. In male zebra finches, the beginning of the sensorimotor phase of song learning parallels an increase of the brain-derived neurotrophic factor (BDNF) in just one part of the song control system, the forebrain nucleus HVC. We report here that transient BDNF-mRNA upregulation in the HVC results in a maximized copying of song syllables. Each treated bird shows motor learning to an extent similar to that of the selected best learners among untreated zebra finches. Because this result was not found following BDNF overexpression in the target areas of HVC within the song system, HVC-anchored mechanisms are limiting sensorimotor vocal learning.
    European Journal of Neuroscience 08/2013; DOI:10.1111/ejn.12329 · 3.67 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Vocal imitation in songbirds exhibits interesting parallels to infant speech development and is currently the model system of choice for exploring the behavioural, molecular and electrophysiological substrates of vocal learning. Among songbirds, the Zebra Finch (Taeniopygia guttata) is currently used as the `flying mouse' of birdsong research. Only males sing and they develop their song primarily during a short sensitive period in early life. They learn their speciesspecific song patterns by memorizing and imitating the songs of conspecifics, mainly adults. Since Immelmann's pioneering work, thousands of zebra finches have been raised in strictly controlled auditory environments to examine how their experience affected their songs. In this article, I review the different experimental procedures that have been used in the laboratory to study the social influences on song learning in the Zebra Finch. Poor song learning was observed using passive playback of taped songs, whereas self-eliciting exposure using operant tutoring techniques induced significant learning, but with a high interindividual variability. The success of the training paradigm is often measured by the quality of imitation of the songs to which the young bird is exposed. Using empirical evidence from the field and the laboratory, I will also discuss this issue, by summarizing possible advantages and disadvantages of producing a perfect imitation. So far, the best method to get a close copy of a song model in the Zebra Finch is to place a single young bird with an adult male. This situation, which is rather unnatural, does not meet the criteria for precise control necessary in experimental conditions. Optimizing the methods used to train a zebra finch to learn a song, in order to be able to predict the imitation success, will improve our understanding of the dynamics of vocal production learning. It would also consolidate this species as a research model of relevance to human speech development and disorders. Keywords: Zebra Finch; birdsong; learning; development; memory; social influences
    Interaction Studies 12/2010; 12(2):324-350. DOI:10.1075/is.12.2.07der · 1.11 Impact Factor
  • Source

Full-text (2 Sources)

Available from
Aug 21, 2014