Disruption of the LOV-J alpha helix interaction activates phototropin kinase activity

Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9038, USA.
Biochemistry (Impact Factor: 3.19). 01/2005; 43(51):16184-92. DOI: 10.1021/bi048092i
Source: PubMed

ABSTRACT Light plays a crucial role in activating phototropins, a class of plant photoreceptors that are sensitive to blue and UV-A wavelengths. Previous studies indicated that phototropin uses a bound flavin mononucleotide (FMN) within its light-oxygen-voltage (LOV) domain to generate a protein-flavin covalent bond under illumination. In the C-terminal LOV2 domain of Avena sativa phototropin 1, formation of this bond triggers a conformational change that results in unfolding of a helix external to this domain called Jalpha [Harper, S. M., et al. (2003) Science 301, 1541-1545]. Though the structural effects of illumination were characterized, it was unknown how these changes are coupled to kinase activation. To examine this, we made a series of point mutations along the Jalpha helix to disrupt its interaction with the LOV domain in a manner analogous to light activation. Using NMR spectroscopy and limited proteolysis, we demonstrate that several of these mutations displace the Jalpha helix from the LOV domain independently of illumination. When placed into the full-length phototropin protein, these point mutations display constitutive kinase activation, without illumination of the sample. These results indicate that unfolding of the Jalpha helix is the critical event in regulation of kinase signaling for the phototropin proteins.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Regulated proteolysis by the proteasome is one of the fundamental mechanisms used in eukaryotic cells to control cellular behavior. Efficient tools to regulate protein stability offer synthetic influence on molecular level on a selected biological process. Optogenetic control of protein stability has been achieved with the photo-sensitive degron (psd) module. This engineered tool consists of the photoreceptor domain light oxygen voltage 2 (LOV2) from Arabidopsis thaliana phototropin1 fused to a sequence that induces direct proteasomal degradation, which was derived from the carboxy-terminal degron of murine ornithine decarboxylase. The abundance of target proteins tagged with the psd module can be regulated by blue light if the degradation tag is exposed to the cytoplasm or the nucleus. We used the model organism Saccharomyces cerevisiae to generate psd module variants with increased and decreased stabilities in darkness or when exposed to blue light using site-specific and random mutagenesis. The variants were characterized as fusions to fluorescent reporter proteins and showed half-lives between 6 and 75 minutes in cells exposed to blue light and 14 to 187 minutes in darkness. In blue light, ten variants showed accelerated degradation and four variants increased stability compared to the original psd module. Measuring the dark/light ratio of selected constructs in yeast cells showed that two variants were obtained with ratios twice as high as in the wild type psd module. In silico modeling of photoreceptor variant characteristics suggested that for most cases alterations in behavior were induced by changes in the light-response of the LOV2 domain. In total, the mutational analysis resulted in psd module variants, which provide tuning of protein stability over a broad range by blue light. Two variants showed characteristics that are profoundly improved compared to the original construct. The modular usage of the LOV2 domain in optogenetic tools allows the usage of the mutants in the context of other applications in synthetic and systems biology as well.
    BMC Systems Biology 12/2014; 8(1):128. DOI:10.1186/s12918-014-0128-9 · 2.85 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Aureochromes have been shown to act as blue-light-regulated transcription factors in algae in the absence of phototropins. Aureochromes comprise a light-, oxygen-, or voltage-sensitive (LOV) domain as a sensory module binding the flavin chromophore and a basic region leucine zipper (bZIP) domain as effector. The domain arrangement in aureochromes with an N-terminal effector is inversed to other LOV proteins. To clarify the role of the linking A'α helix in signaling, we have investigated the LOV domain of aureochrome1a from the diatom alga Phaeodactylum tricornutum without the N-terminal A'α helix but with the C-terminal Jα helix. Results were analyzed in comparison to those previously obtained on the LOV domain with both flanking helices and on the LOV domain with A'α helix but without Jα helix. Fourier transform infrared difference spectroscopy provides evidence by a band at 1656 cm(-1) that the A'α helix unfolds in response to light. This unfolding takes place only in the presence and as a consequence of the unfolding of the Jα helix, which points to an allosteric regulation. Size exclusion chromatography shows the LOV domain to be dimeric in the absence and monomeric in the presence of the A'α helix implying that the folded helix covers the dimerization site. Therefore, the A'α helix directly modulates the oligomerization state of the LOV domain, whereas the Jα helix acts as an allosteric regulator. Both the allosteric control and the light-induced dimerization have not been observed in phototropin-LOV2 and point to a different signaling mechanism within the full-length proteins.
    Biochemistry 01/2015; DOI:10.1021/bi501509z · 3.19 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Plants depend on the surrounding light environment to direct their growth. Blue light (390-500 nm) in particular acts to promote a wide variety of photomorphogenic responses including seedling establishment, phototropism and circadian clock regulation. Several different classes of flavin-based photoreceptors have been identified that mediate the effects of blue light in the dicotyledonous genetic model Arabidopsis thaliana. These include the cryptochromes, the phototropins and members of the Zeitlupe family. In this review, we discuss recent advances, which contribute to our understanding of how these photosensory systems are activated by blue light and how they initiate signaling to regulate diverse aspects of plant development. © The Author(s) 2014. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists.
    Plant and Cell Physiology 12/2014; 56(3). DOI:10.1093/pcp/pcu196 · 4.98 Impact Factor