IL-12, but not IFN-alpha, promotes STAT4 activation and Th1 development in murine CD4+ T cells expressing a chimeric murine/human Stat2 gene.

Center for Immunology and Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA.
The Journal of Immunology (Impact Factor: 5.36). 02/2005; 174(1):294-301. DOI: 10.4049/jimmunol.174.1.294
Source: PubMed

ABSTRACT Humans and mice have evolved distinct pathways for Th1 cell development. Although IL-12 promotes CD4(+) Th1 development in both murine and human T cells, IFN-alphabeta drives Th1 development only in human cells. This IFN-alphabeta-dependent pathway is not conserved in the mouse species due in part to a specific mutation within murine Stat2. Restoration of this pathway in murine T cells would provide the opportunity to more closely model specific human disease states that rely on CD4(+) T cell responses to IFN-alphabeta. To this end, the C terminus of murine Stat2, harboring the mutation, was replaced with the corresponding human Stat2 sequence by a knockin targeting strategy within murine embryonic stem cells. Chimeric m/h Stat2 knockin mice were healthy, bred normally, and exhibited a normal lymphoid compartment. Furthermore, the murine/human STAT2 protein was expressed in murine CD4(+) T cells and was activated by murine IFN-alpha signaling. However, the murine/human STAT2 protein was insufficient to restore full IFN-alpha-driven Th1 development as defined by IFN-gamma expression. Furthermore, IL-12, but not IFN-alpha, promoted acute IFN-gamma secretion in collaboration with IL-18 stimulation in both CD4(+) and CD8(+) T cells. The inability of T cells to commit to Th1 development correlated with the lack of STAT4 phosphorylation in response to IFN-alpha. This finding suggests that, although the C terminus of human STAT2 is required for STAT4 recruitment and activation by the human type I IFNAR (IFN-alphabetaR), it is not sufficient to restore this process through the murine IFNAR complex.


Available from: David Farrar, May 06, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: STAT2 is unique among the STAT family of transcription factors in that its activation is driven predominantly by only two classes of cell surface receptors: Type I and III interferon receptors. As such, STAT2 plays a critical role in host defenses against viral infections. Viruses have evolved to target STAT2 by either inhibiting its expression, blocking its activity, or by targeting it for degradation. Consequently, these viral onslaughts have driven remarkable divergence in the STAT2 gene across species that is not observed in other STAT family members. Thus, the evolution of STAT2 may preserve its activity and protect each species in the face of an ever-changing viral community.
    01/2013; 2(1):e23633. DOI:10.4161/jkst.23633
  • [Show abstract] [Hide abstract]
    ABSTRACT: Type I interferons (IFNs) are pro-inflammatory cytokines that are rapidly induced in different cell types during viral infections. The consequences of type I IFN signalling include direct antiviral activity, innate immune cell activation and regulation of adaptive immune responses. In this Review, we discuss recent conceptual advances in our understanding of indirect and direct regulation of T cell immunity by type I IFNs, which can either promote or inhibit T cell activation, proliferation, differentiation and survival. This regulation depends, to a large extent, on the timing of type I IFN exposure relative to T cell receptor signalling. Type I IFNs also provide activated T cells with resistance to natural killer cell-mediated elimination.
    Nature Reviews Immunology 03/2015; 15(4). DOI:10.1038/nri3806
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Sarcoidosis, a chronic granulomatous disease of unknown cause, has been linked to several environmental risk factors, among which are some that may favor carbon nanotube formation. Using gene array data, we initially observed that bronchoalveolar lavage (BAL) cells from sarcoidosis patients displayed elevated mRNA of the transcription factor, Twist1, among many M1-associated genes compared to healthy controls. Based on this observation we hypothesized that Twist1 mRNA and protein expression might become elevated in alveolar macrophages from animals bearing granulomas induced by carbon nanotube instillation. To address this hypothesis, wild-type and macrophage-specific peroxisome proliferator-activated receptor gamma (PPARγ) knock out mice were given oropharyngeal instillation of multiwall carbon nanotubes (MWCNT). BAL cells obtained 60 days later exhibited significantly elevated Twist1 mRNA expression in granuloma-bearing wild-type or PPARγ knock out alveolar macrophages compared to sham controls. Overall, Twist1 expression levels in PPARγ knock out mice were higher than those of wild-type. Concurrently, BAL cells obtained from sarcoidosis patients and healthy controls validated gene array data: qPCR and protein analysis showed significantly elevated Twist1 in sarcoidosis compared to healthy controls. In vitro studies of alveolar macrophages from healthy controls indicated that Twist1 was inducible by classical (M1) macrophage activation stimuli (LPS, TNFα) but not by IL-4, an inducer of alternative (M2) macrophage activation. Findings suggest that Twist1 represents a PPARγ-sensitive alveolar macrophage M1 biomarker which is induced by inflammatory granulomatous disease in the MWCNT model and in human sarcoidosis.
    International Journal of Molecular Sciences 12/2013; 14(12):23858-71. DOI:10.3390/ijms141223858 · 2.34 Impact Factor