Article

Parathyroid hormone receptor trafficking contributes to the activation of extracellular signal-regulated kinases but is not required for regulation of cAMP signaling

Division of Endocrinology and Metabolism, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
Journal of Biological Chemistry (Impact Factor: 4.6). 04/2005; 280(12):11281-8. DOI: 10.1074/jbc.M413393200
Source: PubMed

ABSTRACT Agonist-mediated activation of the type 1 parathyroid hormone receptor (PTH1R) results in several signaling events and receptor endocytosis. It is well documented that arrestins contribute to desensitization of both G(s)- and G(q)-mediated signaling and mediate PTH1R internalization. However, whether PTH1R trafficking directly contributes to signaling remains unclear. To address this question, we investigated the role of PTH1R trafficking in cAMP signaling and activation of extracellular signal-regulated kinases ERK1/2 in HEK-293 cells. Dominant negative forms of dynamin (K44A-dynamin) and beta-arrestin1 (beta-arrestin1-(319-418)) abrogated PTH1R internalization but had no effect on cAMP signaling; neither acute cAMP production by PTH nor desensitization and resensitization of cAMP signaling were affected. Therefore, PTH1R trafficking is not necessary for regulation of cAMP signaling. PTH-(1-34) induced rapid and robust activation of ERK1/2. A PTHrP-based analog ([p-benzoylphenylalanine1, Ile5,Arg(11,13),Tyr36]PTHrP-(1-36)NH2), which selectively activates the G(s)/cAMP pathway without inducing PTH1R endocytosis, failed to stimulate ERK1/2 activity. Inhibition of PTH1R endocytosis by K44A-dynamin dampened ERK1/2 activation in response to PTH-(1-34) by 69%. Incubation with the epidermal growth factor receptor inhibitor AG1478 reduced ERK1/2 phosphorylation further. In addition, ERK1/2 phosphorylation occurred following internalization of a PTH1R mutant induced by PTH-(7-34) in the absence of G protein signaling. Collectively, these data indicate that PTH1R trafficking and G(q) (but not G(s)) signaling independently contribute to ERK1/2 activation, predominantly via transactivation of the epidermal growth factor receptor.

0 Bookmarks
 · 
65 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Introduction: Intermittent parathyroid hormone (PTH) administration, acting through multiple signaling pathways, exerts an osteoanabolic effect on the skeleton that surpasses the effect of other antiosteoporotic agents. However, its efficacy is limited by the coupling effect and relatively common adverse events. Thus, the development of more sophisticated PTH receptor analogs seems imperative. Areas covered: In this review, the authors summarize the role of PTH signaling pathway in bone remodeling. The authors also summarize investigational analogs targeting this pathway, which may be potential treatments for osteoporosis. Expert opinion: β-arrestins are multifunctional cytoplasmic molecules that are decisive for regulating intracellular PTH signaling. Recently, in preclinical studies, arrestin analogs have achieved the anabolic bone effect of PTH without an accompanying increase in bone resorption. However, it is not yet known whether these analogs have adverse effects and there are no clinical data for their efficacy to date. On the other hand, several molecules derived either from PTH and PTH-related protein (PTHrP) molecules have been developed. Alternative routes of PTH 1 - 34 delivery (oral, transdermal), the PTH analog ostabolin and the N-terminal PTHrP analogs PTHrP 1 - 36 and abaloparatide, have recently been or are currently being tested in clinical trials and are more likely to become available for use in the near future.
    Expert Opinion on Investigational Drugs 10/2014; 24(2):1-13. DOI:10.1517/13543784.2015.973021 · 5.43 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: ABSTRACT
  • [Show abstract] [Hide abstract]
    ABSTRACT: Astrocytes express a variety of G protein-coupled receptors and might influence cognitive functions, such as learning and memory. However, the roles of astrocytic Gs-coupled receptors in cognitive function are not known. We found that humans with Alzheimer's disease (AD) had increased levels of the Gs-coupled adenosine receptor A2A in astrocytes. Conditional genetic removal of these receptors enhanced long-term memory in young and aging mice and increased the levels of Arc (also known as Arg3.1), an immediate-early gene that is required for long-term memory. Chemogenetic activation of astrocytic Gs-coupled signaling reduced long-term memory in mice without affecting learning. Like humans with AD, aging mice expressing human amyloid precursor protein (hAPP) showed increased levels of astrocytic A2A receptors. Conditional genetic removal of these receptors enhanced memory in aging hAPP mice. Together, these findings establish a regulatory role for astrocytic Gs-coupled receptors in memory and suggest that AD-linked increases in astrocytic A2A receptor levels contribute to memory loss.