Novel function for receptor activity-modifying proteins (RAMPs) in post-endocytic receptor trafficking

Department of Physiology, Michigan State University, East Lansing, Michigan 48824, USA.
Journal of Biological Chemistry (Impact Factor: 4.6). 04/2005; 280(10):9297-307. DOI: 10.1074/jbc.M413786200
Source: PubMed

ABSTRACT RAMPs (1-3) are single transmembrane accessory proteins crucial for plasma membrane expression, which also determine receptor phenotype of various G-protein-coupled receptors. For example, adrenomedullin receptors are comprised of RAMP2 or RAMP3 (AM1R and AM2R, respectively) and calcitonin receptor-like receptor (CRLR), while a CRLR heterodimer with RAMP1 yields a calcitonin gene-related peptide receptor. The major aim of this study was to determine the role of RAMPs in receptor trafficking. We hypothesized that a PDZ type I domain present in the C terminus of RAMP3, but not in RAMP1 or RAMP2, leads to protein-protein interactions that determine receptor trafficking. Employing adenylate cyclase assays, radioligand binding, and immunofluorescence microscopy, we observed that in HEK293 cells the CRLR-RAMP complex undergoes agonist-stimulated desensitization and internalization and fails to resensitize (i.e. degradation of the receptor complex). Co-expression of N-ethylmaleimide-sensitive factor (NSF) with the CRLR-RAMP3 complex, but not CRLR-RAMP1 or CRLR-RAMP2 complex, altered receptor trafficking to a recycling pathway. Mutational analysis of RAMP3, by deletion and point mutations, indicated that the PDZ motif of RAMP3 interacts with NSF to cause the change in trafficking. The role of RAMP3 and NSF in AM2R recycling was confirmed in rat mesangial cells, where RNA interference with RAMP3 and pharmacological inhibition of NSF both resulted in a lack of receptor resensitization/recycling after agonist-stimulated desensitization. These findings provide the first functional difference between the AM1R and AM2R at the level of post-endocytic receptor trafficking. These results indicate a novel function for RAMP3 in the post-endocytic sorting of the AM-R and suggest a broader regulatory role for RAMPs in receptor trafficking.

  • [Show abstract] [Hide abstract]
    ABSTRACT: G protein-coupled receptors (GPCRs) are membrane proteins that traverse the plasma membrane seven times (hence also called 7TM receptors). The polytopic structure of GPCRs makes the folding of GPCRs difficult and complex. Indeed, many wild type GPCRs are not folded optimally and defects in folding are the most common cause of genetic diseases due to GPCR mutations. Both general and receptor-specific molecular chaperones aid the folding of GPCRs. Chemical chaperones have been shown to be able to correct the misfolding in mutant GPCRs, proving to be important tools for studying the structure-function relationship of GPCRs. However, their potential therapeutic value is very limited. Pharmacological chaperones (pharmacoperones) are potentially important novel therapeutics for treating genetic diseases caused by mutations in GPCR genes that resulted in misfolded mutant proteins. Pharmacoperones also increase cell surface expression of wild type GPCRs therefore they could be used to treat diseases that do not harbor mutations in GPCRs. Recent studies have shown that indeed pharmacoperones work in both experimental animals and patients. High-throughput assays have been developed to identify new pharmacoperones that could be used as therapeutics for a number of endocrine and other genetic diseases.
    Endocrine reviews 03/2014; 35(4):er20131121. DOI:10.1210/er.2013-1121 · 19.76 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Adrenomedullins (AM) is a multifaceted distinct subfamily of peptides that belongs to the calcitonin gene-related peptide (CGRP) superfamily. These peptides exert their functional activities via associations of calcitonin receptor-like receptors (CLRs) and receptor activity-modifying proteins (RAMPs) RAMP2 and RAMP3. Recent studies established that RAMPs and CLRs can modify biochemical properties such as trafficking and glycosylation of each other. However there is very little or no understanding regarding how RAMP or CLR influence ligand-induced events of AM-receptor complex. In this study, using pufferfish homologs of CLR (mfCLR1–3) and RAMP (mfRAMP2 and mfRAMP3), we revealed that all combinations of CLR and RAMP quickly underwent ligand-induced internalization; however, their recycling rates were different as follows: mfCLR1–mfRAMP3 > mfCLR2–mfRAMP3 > mfCLR3–mfRAMP3. Functional receptor assay confirmed that the recycled receptors were resensitized on the plasma membrane. In contrast, a negligible amount of mfCLR1–mfRAMP2 was recycled and reconstituted. Immunocytochemistry results indicated that the lower recovery rate of mfCLR3–mfRAMP3 and mfCLR1–mfRAMP2 was correlated with higher proportion of lysosomal localization of these receptor complexes compared to the other combinations. Collectively our results indicate, for the first time, that the ligand-induced internalization, recycling, and reconstitution properties of RAMP–CLR receptor complexes depend on the receptor-complex as a whole, and not on individual CLR or RAMP alone.
    General and Comparative Endocrinology 05/2014; DOI:10.1016/j.ygcen.2014.04.029 · 2.82 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Parkinson disease (PD) is an age-related, neurodegenerative motor disorder characterized by progressive degeneration of dopaminergic neurons in the substantia nigra pars compacta and presence of α-synuclein-containing protein aggregates. Mutations in the mitochondrial Ser/Thr kinase PTEN-induced kinase 1 (PINK1) are associated with an autosomal recessive familial form of early-onset PD. Recent studies have suggested that PINK1 plays important neuroprotective roles against mitochondrial dysfunction by phosphorylating and recruiting Parkin, a cytosolic E3 ubiquitin ligase, to facilitate elimination of damaged mitochondria via autophagy-lysosomal pathways. Loss of PINK1 in cells and animals leads to various mitochondrial impairments and oxidative stress, culminating in dopaminergic neuronal death in humans. Using a 2-D PAGE proteomics approach, the differences in expressed brain proteome and phosphoproteome between six month-old PINK1-deficient mice and wild-type mice were identified. The observed changes in the brain proteome and phosphoproteome of mice lacking PINK1 suggest that defects in signaling networks, energy metabolism, cellular proteostasis and neuronal structure and plasticity are involved in the pathogenesis of familial PD.This article is protected by copyright. All rights reserved.
    Journal of Neurochemistry 01/2015; DOI:10.1111/jnc.13039 · 4.24 Impact Factor