Article

Ligament structure, physiology and function.

McCaig Centre for Joint Injury and Arthritis Research, University of Calgary, Calgary, Alberta, Canada.
Journal of musculoskeletal & neuronal interactions (Impact Factor: 2.45). 07/2004; 4(2):199-201.
Source: PubMed

ABSTRACT Ligaments are specialized connective tissues with very interesting biomechanical properties. They have the ability to adapt to the complex functions that each are required to perform. While ligaments were once thought to be inert, they are in fact responsive to many local and systemic factors that influence their function within the organism. Injury to a ligament results in a drastic change in its structure and physiology and creates a situation where ligament function is restored by the formation of scar tissue that is biologically and biomechanically inferior to the tissue it replaces. This article will briefly review the basic structure, physiology and function of normal versus healing knee ligaments, referring specifically to what is known about two of the most extensively studied and clinically relevant knee ligaments, the anterior cruciate (ACL) and medial collateral (MCL) ligaments of the knee. Those readers wishing for more comprehensive sources of information on ligament biology and biomechanics are referred to many excellent reviews on these topics.

19 Bookmarks
 · 
925 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Bio-enhanced ACL repair, where the suture repair is supplemented with a biological scaffold, is a promising novel technique to stimulate healing after ACL rupture. However, the histological properties of a successfully healing ACL and how they relate to the mechanical properties have not been fully described.
    Orthopaedic journal of sports medicine. 11/2013; 1(6).
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The use of conventional modalities for chronic neck pain remains debatable, primarily because most treatments have had limited success. We conducted a review of the literature published up to December 2013 on the diagnostic and treatment modalities of disorders related to chronic neck pain and concluded that, despite providing temporary relief of symptoms, these treatments do not address the specific problems of healing and are not likely to offer long-term cures. The objectives of this narrative review are to provide an overview of chronic neck pain as it relates to cervical instability, to describe the anatomical features of the cervical spine and the impact of capsular ligament laxity, to discuss the disorders causing chronic neck pain and their current treatments, and lastly, to present prolotherapy as a viable treatment option that heals injured ligaments, restores stability to the spine, and resolves chronic neck pain. The capsular ligaments are the main stabilizing structures of the facet joints in the cervical spine and have been implicated as a major source of chronic neck pain. Chronic neck pain often reflects a state of instability in the cervical spine and is a symptom common to a number of conditions described herein, including disc herniation, cervical spondylosis, whiplash injury and whiplash associated disorder, postconcussion syndrome, vertebrobasilar insufficiency, and Barré-Liéou syndrome. When the capsular ligaments are injured, they become elongated and exhibit laxity, which causes excessive movement of the cervical vertebrae. In the upper cervical spine (C0-C2), this can cause a number of other symptoms including, but not limited to, nerve irritation and vertebrobasilar insufficiency with associated vertigo, tinnitus, dizziness, facial pain, arm pain, and migraine headaches. In the lower cervical spine (C3-C7), this can cause muscle spasms, crepitation, and/or paresthesia in addition to chronic neck pain. In either case, the presence of excessive motion between two adjacent cervical vertebrae and these associated symptoms is described as cervical instability. Therefore, we propose that in many cases of chronic neck pain, the cause may be underlying joint instability due to capsular ligament laxity. Currently, curative treatment options for this type of cervical instability are inconclusive and inadequate. Based on clinical studies and experience with patients who have visited our chronic pain clinic with complaints of chronic neck pain, we contend that prolotherapy offers a potentially curative treatment option for chronic neck pain related to capsular ligament laxity and underlying cervical instability.
    The Open Orthopaedics Journal 01/2014; 8:326-45.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Trietz ligament connects the duodeno-jejunal flexure to the right crus of the diaphragm. There are various opinions regarding the existence of the smooth muscle fibers in the ligament. We want to resolve this complexity with microscopic study of this part in cadavers. This study done on three cadavers in the medical faculty of Isfahan University of Medical Sciences. Three samples of histological specimens were collected from the upper, the central, and the lower parts of Trietz ligament and were stained by H and E staining and Mallory's trichrome stain. Three samples were collected from the regions of exact connection of the main mesentery to the body wall, the intestine, and the region between these two connected regions, and these specimens were stained. In the microscopic survey, no collagen bundles were observed in the collected samples of the Trietz ligament after the dense muscular tissues. In the samples which were collected to work on collagen tissues stretching from the Trietz ligament to the main mesentery of intestine, no collagen bundles were observed. Trietz ligament is connected to the right crus of the diaphragm from the third and the fourth parts of the duodenum. Number of researchers state that there are smooth and striated muscular tissues and some others, with regard to observations of histological phases made from the samples of Trietz muscles, conclude that it can probably be noted that muscular bundles or the dense connective tissue bundles of collagen cannot be observed in the way we imagine.
    Advanced biomedical research. 01/2014; 3:69.

Full-text

Download
10 Downloads
Available from