Antiangiogenic gene therapy: disruption of neovascular networks mediated by inducible caspase-9 delivered with a transcriptionally targeted adenoviral vector.

Angiogenesis Research Laboratory, Department of Restorative Sciences, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA.
Gene Therapy (Impact Factor: 4.2). 03/2005; 12(4):320-9. DOI: 10.1038/
Source: PubMed

ABSTRACT The activation of an inducible caspase (iCaspase-9) mediates apoptosis of neovascular endothelial cells, and overcomes the prosurvival effect of vascular endothelial growth factor or basic fibroblast growth factor. The potential utilization of direct activation of caspases as an antiangiogenic strategy for treatment of angiogenesis-dependent diseases (eg cancer) requires expression of the inducible caspase primarily in the tumor endothelium. The objective of this work was to develop and characterize a transcriptionally targeted adenoviral vector that mediates expression of iCaspase-9 specifically in neovascular endothelial cells. We observed that adenoviral vectors containing the human VEGFR2 promoter induced reporter gene expression primarily in proliferating human dermal microvascular endothelial cells (HDMEC). HDMEC transduced with recombinant adenoviral vectors containing iCaspase-9 under regulation of the VEGFR2 promoter (Ad-hVEGFR2-iCaspase-9) and exposed to a cell-permeable dimerizer drug (AP20187), presented higher caspase-3 activity and apoptosis than controls (P < or = 0.05). Using the SCID Mouse Model of Human Angiogenesis, we observed that local delivery of Ad-hVEGFR2-iCaspase-9 followed by intraperitoneal injection of AP20187 resulted in endothelial cell apoptosis and local ablation of microvessels. We believe that this constitutes the first report of a transcriptionally targeted antiangiogenic adenoviral vector that mediates neovascular disruption upon activation of a caspase-based artificial death switch.

  • Studies in Surface Science and Catalysis - STUD SURF SCI CATAL. 01/2005; 158:741-748.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Vascular endothelial cells (ECs) are ideal gene therapy targets as they provide widespread tissue access and are the first contact surfaces following intravenous vector administration. Human recombinant adenovirus serotype 5 (Ad5) is the most frequently used gene transfer system because of its appreciable transgene payload capacity and lack of somatic mutation risk. However, standard Ad5 vectors predominantly transduce liver but not the vasculature following intravenous administration. We recently developed an Ad5 vector with a myeloid cell-binding peptide (MBP) incorporated into the knob-deleted, T4 fibritin chimeric fiber (Ad.MBP). This vector was shown to transduce pulmonary ECs presumably via a vector handoff mechanism. Here we tested the body-wide tropism of the Ad.MBP vector, its myeloid cell necessity, and vector-EC expression dose response. Using comprehensive multi-organ co-immunofluorescence analysis, we discovered that Ad.MBP produced widespread EC transduction in the lung, heart, kidney, skeletal muscle, pancreas, small bowel, and brain. Surprisingly, Ad.MBP retained hepatocyte tropism albeit at a reduced frequency compared with the standard Ad5. While binding specifically to myeloid cells ex vivo, multi-organ Ad.MBP expression was not dependent on circulating monocytes or macrophages. Ad.MBP dose de-escalation maintained full lung-targeting capacity but drastically reduced transgene expression in other organs. Swapping the EC-specific ROBO4 for the CMV promoter/enhancer abrogated hepatocyte expression but also reduced gene expression in other organs. Collectively, our multilevel targeting strategy could enable therapeutic biological production in previously inaccessible organs that pertain to the most debilitating or lethal human diseases.Laboratory Investigation advance online publication, 23 June 2014; doi:10.1038/labinvest.2014.78.
    Laboratory Investigation 06/2014; 94(8). · 3.83 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Adenovirus serotype 5 (Ad5) vectors are well suited for gene therapy. However, tissue-selective transduction by systemically administered Ad5-based vectors is confounded by viral particle sequestration in the liver. Hexon-modified Ad5 expressing reporter gene under transcriptional control by the immediate/early cytomegalovirus (CMV) or the Roundabout 4 receptor (Robo4) enhancer/promoter was characterized by growth in cell culture, stability in vitro, gene transfer in the presence of human coagulation factor X, and biodistribution in mice. The obtained data demonstrate the utility of the Robo4 promoter in an Ad5 vector context. Substitution of the hypervariable region 7 (HVR7) of the Ad5 hexon with HVR7 from Ad serotype 3 resulted in decreased liver tropism and dramatically altered biodistribution of gene expression. The results of these studies suggest that the combination of liver detargeting using a genetic modification of hexon with an endothelium-specific transcriptional control element produces an additive effect in the improvement of Ad5 biodistribution.
    Virology 12/2013; 447(1-2):312-25. · 3.28 Impact Factor

Full-text (2 Sources)

Available from
Aug 7, 2014