Article

Bax deletion prevents neuronal loss but not neurological symptoms in a transgenic model of inherited prion disease.

Dulbecco Telethon Institute and Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri, 20157 Milan, Italy.
Proceedings of the National Academy of Sciences (Impact Factor: 9.81). 02/2005; 102(1):238-43. DOI: 10.1073/pnas.0406173102
Source: PubMed

ABSTRACT Transgenic Tg(PG14) mice express a mutant prion protein containing 14 octapeptide repeats, whose human homologue is associated with an inherited prion dementia. These mice develop a progressive neurological disorder characterized by ataxia and cerebellar atrophy, with massive apoptotic degeneration of granule neurons. Bax, a proapoptotic gene of the Bcl-2 family, plays a key role in regulating cell death in the nervous system. To analyze the role of Bax in the Tg(PG14) phenotype, we crossed Tg(PG14) mice with Bax(-/-) mice to obtain Tg(PG14)/Bax(-/-) offspring. Bax deletion effectively rescued cerebellar granule neurons from apoptosis, implying that these cells die via a Bax-dependent process. Surprisingly, however, the age at which symptoms began and the duration of the clinical phase of the illness were not altered in Tg(PG14)/Bax(-/-) mice. In addition, Bax deletion failed to prevent shrinkage of the molecular layer of the cerebellum and loss of synaptophysin-positive synaptic endings. Our analysis indicates that synaptic loss makes a critical contribution to the Tg(PG14) phenotype. These results provide insights into the pathogenesis of prion diseases and have important implications for the treatment of these disorders.

Download full-text

Full-text

Available from: Kevin Aaron Roth, Jul 06, 2015
0 Followers
 · 
86 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Dysregulated calcium signaling and accumulation of aberrant proteins causing endoplasmic reticulum stress are the early sign of intra-axonal pathological events in many neurodegenerative diseases, and apoptotic signaling is initiated when the stress goes beyond the maximum threshold level of endoplasmic reticulum. The fate of the cell to undergo apoptosis is controlled by Ca2(+) signaling and dynamics at the level of the endoplasmic reticulum. Endoplasmic reticulum resident inositol 1,4,5-trisphosphate receptors (IP3R) play a pivotal role in cell death signaling by mediating Ca2(+) flux from the endoplasmic reticulum into the cytosol and mitochondria. Hence, many prosurvival and prodeath signaling pathways and proteins affect Ca2(+) signaling by directly targeting IP3R channels, which can happen in an IP3R-isoform-dependent manner. Here, in this review, we summarize the regulatory mechanisms of inositol triphosphate receptors in calcium regulation and initiation of apoptosis during unfolded protein response.
    Journal of Molecular Neuroscience 04/2015; DOI:10.1007/s12031-015-0551-4 · 2.76 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: How mutant prion protein (PrP) leads to neurological dysfunction in genetic prion diseases is unknown. Tg(PG14) mice synthesize a misfolded mutant PrP which is partially retained in the neuronal endoplasmic reticulum (ER). As these mice age, they develop ataxia and massive degeneration of cerebellar granule neurons (CGNs). Here, we report that motor behavioral deficits in Tg(PG14) mice emerge before neurodegeneration and are associated with defective glutamate exocytosis from granule neurons due to impaired calcium dynamics. We found that mutant PrP interacts with the voltage-gated calcium channel α(2)δ-1 subunit, which promotes the anterograde trafficking of the channel. Owing to ER retention of mutant PrP, α(2)δ-1 accumulates intracellularly, impairing delivery of the channel complex to the cell surface. Thus, mutant PrP disrupts cerebellar glutamatergic neurotransmission by reducing the number of functional channels in CGNs. These results link intracellular PrP retention to synaptic dysfunction, indicating new modalities of neurotoxicity and potential therapeutic strategies.
    Neuron 04/2012; 74(2):300-13. DOI:10.1016/j.neuron.2012.02.027 · 15.98 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We examined the possibility that cellular prion protein (PrP(C)) plays a role in the receptor-mediated apoptotic pathway. We first found that CD95/Fas triggering induced a redistribution of PrP(C) to the mitochondria of T lymphoblastoid CEM cells via a mechanism that brings into play microtubular network integrity and function. In particular, we demonstrated that PrP(C) was redistributed to raft-like microdomains at the mitochondrial membrane, as well as at endoplasmic reticulum-mitochondria-associated membranes. Our in vitro experiments also demonstrated that, although PrP(C) had such an effect on mitochondria, it induced the loss of mitochondrial membrane potential and cytochrome c release only after a contained rise of calcium concentration. Finally, the involvement of PrP(C) in apoptosis execution was also analyzed in PrP(C)-small interfering RNA-transfected cells, which were found to be significantly less susceptible to CD95/Fas-induced apoptosis. Taken together, these results suggest that PrP(C) might play a role in the complex multimolecular signaling associated with CD95/Fas receptor-mediated apoptosis.
    Molecular biology of the cell 12/2011; 22(24):4842-53. DOI:10.1091/mbc.E11-04-0348 · 5.98 Impact Factor