Bax deletion prevents neuronal loss but not neurological symptoms in a transgenic model of inherited prion disease.

Dulbecco Telethon Institute and Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri, 20157 Milan, Italy.
Proceedings of the National Academy of Sciences (Impact Factor: 9.81). 02/2005; 102(1):238-43. DOI: 10.1073/pnas.0406173102
Source: PubMed

ABSTRACT Transgenic Tg(PG14) mice express a mutant prion protein containing 14 octapeptide repeats, whose human homologue is associated with an inherited prion dementia. These mice develop a progressive neurological disorder characterized by ataxia and cerebellar atrophy, with massive apoptotic degeneration of granule neurons. Bax, a proapoptotic gene of the Bcl-2 family, plays a key role in regulating cell death in the nervous system. To analyze the role of Bax in the Tg(PG14) phenotype, we crossed Tg(PG14) mice with Bax(-/-) mice to obtain Tg(PG14)/Bax(-/-) offspring. Bax deletion effectively rescued cerebellar granule neurons from apoptosis, implying that these cells die via a Bax-dependent process. Surprisingly, however, the age at which symptoms began and the duration of the clinical phase of the illness were not altered in Tg(PG14)/Bax(-/-) mice. In addition, Bax deletion failed to prevent shrinkage of the molecular layer of the cerebellum and loss of synaptophysin-positive synaptic endings. Our analysis indicates that synaptic loss makes a critical contribution to the Tg(PG14) phenotype. These results provide insights into the pathogenesis of prion diseases and have important implications for the treatment of these disorders.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Dysregulated calcium signaling and accumulation of aberrant proteins causing endoplasmic reticulum stress are the early sign of intra-axonal pathological events in many neurodegenerative diseases, and apoptotic signaling is initiated when the stress goes beyond the maximum threshold level of endoplasmic reticulum. The fate of the cell to undergo apoptosis is controlled by Ca2(+) signaling and dynamics at the level of the endoplasmic reticulum. Endoplasmic reticulum resident inositol 1,4,5-trisphosphate receptors (IP3R) play a pivotal role in cell death signaling by mediating Ca2(+) flux from the endoplasmic reticulum into the cytosol and mitochondria. Hence, many prosurvival and prodeath signaling pathways and proteins affect Ca2(+) signaling by directly targeting IP3R channels, which can happen in an IP3R-isoform-dependent manner. Here, in this review, we summarize the regulatory mechanisms of inositol triphosphate receptors in calcium regulation and initiation of apoptosis during unfolded protein response.
    Journal of Molecular Neuroscience 04/2015; DOI:10.1007/s12031-015-0551-4 · 2.76 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Prion diseases, also known as transmissible spongiform encephalopathies (TSEs), are a group of fatal neurodegenerative disorders affecting humans and other mammalian species. The central event in TSE pathogenesis is the conformational conversion of the cellular prion protein, PrP(C), into the aggregate, β -sheet rich, amyloidogenic form, PrP(Sc). Increasing evidence indicates that distinct PrP(Sc) conformers, forming distinct ordered aggregates, can encipher the phenotypic TSE variants related to prion strains. Prion strains are TSE isolates that, after inoculation into syngenic hosts, cause disease with distinct characteristics, such as incubation period, pattern of PrP(Sc) distribution, and regional severity of histopathological changes in the brain. In analogy with other amyloid forming proteins, PrP(Sc) toxicity is thought to derive from the existence of various intermediate structures prior to the amyloid fiber formation and/or their specific interaction with membranes. The latter appears particularly relevant for the pathogenesis of TSEs associated with GPI-anchored PrP(Sc), which involves major cellular membrane distortions in neurons. In this review, we update the current knowledge on the molecular mechanisms underlying three fundamental aspects of the basic biology of prions such as the putative mechanism of prion protein conversion to the pathogenic form PrP(Sc) and its propagation, the molecular basis of prion strains, and the mechanism of induced neurotoxicity by PrP(Sc) aggregates.
    International Journal of Cell Biology 01/2013; 2013:910314. DOI:10.1155/2013/910314
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Pathological events are well characterized in amyotrophic lateral sclerosis (ALS) mouse models, but review of the literature fails to identify a specific initiating event that precipitates disease pathology. There is now growing consensus in the field that axon and synapses are first cellular sites of degeneration, but controversy exists over whether axon and synapse loss is initiated autonomously at those sites or by pathology in the cell body, in nonneuronal cells or even in nonmotoneurons (MNs). Previous studies have identified pathological events in the mutant superoxide dismutase 1 (SOD1) models involving spinal cord, peripheral axons, neuromuscular junctions (NMJs), or muscle; however, few studies have systematically examined pathogenesis at multiple sites in the same study. We have performed ultrastructural examination of both central and peripheral components of the neuromuscular system in the SOD1(G93A) mouse model of ALS. Twenty percent of MNs undergo degeneration by P60, but NMJ innervation in fast fatigable muscles is reduced by 40% by P30. Gait alterations and muscle weakness were also found at P30. There was no change in axonal transport prior to initial NMJ denervation. Mitochondrial morphological changes are observed at P7 and become more prominent with disease progression. At P30 there was a significant decrease in excitatory axo-dendritic and axo-somatic synapses with an increase in C-type axo-somatic synapses. Our study examined early pathology in both peripheral and central neuromuscular system. The muscle denervation is associated with functional motor deficits and begins during the first postnatal month in SOD1(G93A) mice. Physiological dysfunction and pathology in the mitochondria of synapses and MN soma and dendrites occur, and disease onset in these animals begins more than 2 months earlier than originally thought. This information may be valuable for designing preclinical trials that are more likely to impact disease onset and progression.
    07/2013; 3(4):431-57. DOI:10.1002/brb3.142

Full-text (2 Sources)

Available from
Jun 2, 2014