Article

Neurobehavioral characterization of APP23 transgenic mice with the SHIRPA primary screen.

Université de Rouen, Faculté de Médecine et de Pharmacie, INSERM U614, IFRMP23, Bâtiment de Recherche, 76183 Rouen Cedex, France.
Behavioural Brain Research (Impact Factor: 3.39). 03/2005; 157(1):91-8. DOI: 10.1016/j.bbr.2004.06.020
Source: PubMed

ABSTRACT The SHIRPA primary screen comprises 40 measures covering various reflexes and basic sensorimotor functions. This multi-test battery was used to compare non-transgenic controls with APP23 transgenic mice, expressing the 751 isoform of human beta-amyloid precursor protein and characterized by amyloid deposits in parenchyma and vessel walls. The APP23 mice were distinguishable from controls by pathological limb reflexes, myoclonic jumping, seizure activity, and tail malformation. In addition, this mouse model of Alzheimer's disease was also marked by a crooked swimming trajectory. APP23 mice were also of lighter weight and were less inclined to stay immobile during a transfer arousal test. Despite the neurologic signs, APP23 transgenic mice were not deficient in stationary beam, coat-hanger, and rotorod tests, indicating intact motor coordination abilities.

1 Bookmark
 · 
107 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: The accumulation of misfolded proteins in neurons, leading to the formation of cytoplasmic and nuclear aggregates, is a common theme in age-related neurodegenerative diseases, possibly due to disturbances of the proteostasis and insufficient activity of cellular protein clearance pathways. Lithium is a well-known autophagy inducer that exerts neuroprotective effects in different conditions and has been proposed as a promising therapeutic agent for several neurodegenerative diseases. We tested the efficacy of chronic lithium (10.4 mg/kg) treatment in a transgenic mouse model of Machado-Joseph disease, an inherited neurodegenerative disease, caused by an expansion of a polyglutamine tract within the protein ataxin-3. A battery of behavioral tests was used to assess disease progression. In spite of activating autophagy, as suggested by the increased levels of Beclin-1, Atg7, and LC3-II, and a reduction in the p62 protein levels, lithium administration showed no overall beneficial effects in this model concerning motor performance, showing a positive impact only in the reduction of tremors at 24 weeks of age. Our results do not support lithium chronic treatment as a promising strategy for the treatment of Machado-Joseph disease (MJD).
    The Cerebellum 08/2014; · 2.86 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Hypersynchronicity of neuronal brain circuits is a feature of Alzheimer¿s disease (AD). Mouse models of AD expressing mutated forms of the amyloid-ß precursor protein (APP), a central protein involved in AD pathology, show cortical hypersynchronicity. We studied hippocampal circuitry in APP23 transgenic mice using telemetric electroencephalography (EEG), at the age of onset of memory deficits. APP23 mice display spontaneous hypersynchronicity in the hippocampus including epileptiform spike trains. Furthermore, spectral contributions of hippocampal theta and gamma oscillations are compromised in APP23 mice, compared to non-transgenic controls. Using cross-frequency coupling analysis, we show that hippocampal gamma amplitude modulation by theta phase is markedly impaired in APP23 mice. Hippocampal hypersynchronicity and waveforms are differentially modulated by injection of riluzole and the non-competitive N-methyl-D-aspartate (NMDA) receptor inhibitor MK801, suggesting specific involvement of voltage-gated sodium channels and NMDA receptors in hypersynchronicity thresholds in APP23 mice. Furthermore, APP23 mice show marked activation of p38 mitogen-activated protein (MAP) kinase in hippocampus, and injection of MK801 but not riluzole reduces activation of p38 in the hippocampus. A p38 inhibitor induces hypersynchronicity in APP23 mice to a similar extent as MK801, thus supporting suppression of hypersynchronicity involves NMDA receptors-mediated p38 activity. In summary, we characterize components of hippocampal hypersynchronicity, waveform patterns and cross-frequency coupling in the APP23 mouse model by pharmacological modulation, furthering the understanding of epileptiform brain activity in AD.
    Acta neuropathologica communications. 10/2014; 2(1):149.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Alzheimer's disease (AD) is associated with an elevated risk for seizures that may be fundamentally connected to cognitive dysfunction. Supporting this link, many mouse models for AD exhibit abnormal electroencephalogram (EEG) activity in addition to the expected neuropathology and cognitive deficits. Here, we used a controllable transgenic system to investigate how network changes develop and are maintained in a model characterized by amyloid β (Aβ) overproduction and progressive amyloid pathology. EEG recordings in tet-off mice overexpressing amyloid precursor protein (APP) from birth display frequent sharp wave discharges (SWDs). Unexpectedly, we found that withholding APP overexpression until adulthood substantially delayed the appearance of epileptiform activity. Together, these findings suggest that juvenile APP overexpression altered cortical development to favor synchronized firing. Regardless of the age at which EEG abnormalities appeared, the phenotype was dependent on continued APP overexpression and abated over several weeks once transgene expression was suppressed. Abnormal EEG discharges were independent of plaque load and could be extinguished without altering deposited amyloid. Selective reduction of Aβ with a γ-secretase inhibitor has no effect on the frequency of SWDs, indicating that another APP fragment or the full-length protein was likely responsible for maintaining EEG abnormalities. Moreover, transgene suppression normalized the ratio of excitatory to inhibitory innervation in the cortex, whereas secretase inhibition did not. Our results suggest that APP overexpression, and not Aβ overproduction, is responsible for EEG abnormalities in our transgenic mice and can be rescued independently of pathology.
    Journal of Neuroscience 03/2014; 34(11):3826-40. · 6.75 Impact Factor