Article

Tbx5 and Tbx4 are not sufficient to determine limb-specific morphologies but have common roles in initiating limb outgrowth.

Division of Developmental Biology, National Institute for Medical Research, Mill Hill, London NW7 1AA, United Kingdom.
Developmental Cell (Impact Factor: 12.86). 02/2005; 8(1):75-84. DOI: 10.1016/j.devcel.2004.11.013
Source: PubMed

ABSTRACT Morphological differences between forelimbs and hindlimbs are thought to be regulated by Tbx5 expressed in the forelimb and Tbx4 and Pitx1 expressed in the hindlimb. Gene deletion and misexpression experiments have suggested that these factors have two distinct functions during limb development: the initiation and/or maintenance of limb outgrowth and the specification of limb-specific morphologies. Using genetic methods in the mouse, we have investigated the roles of Tbx5, Tbx4, and Pitx1 in both processes. Our results support a role for Tbx5 and Tbx4, but not for Pitx1, in initiation of limb outgrowth. In contrast to conclusions from gene misexpression experiments in the chick, our results demonstrate that Tbx5 and Tbx4 do not determine limb-specific morphologies. However, our results support a role for Pitx1 in the specification of hindlimb-specific morphology. We propose a model in which positional codes, such as Pitx1 and Hox genes in the lateral plate mesoderm, dictate limb-specific morphologies.

0 Bookmarks
 · 
124 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Tight control over gene expression is essential for precision in embryonic development and acquisition of the regulatory elements responsible is the predominant driver for evolution of new structures. Tbx5 and Tbx4, two genes expressed in forelimb and hindlimb-forming regions respectively, play crucial roles in the initiation of limb outgrowth. Evolution of regulatory elements that activate Tbx5 in rostral LPM was essential for the acquisition of forelimbs in vertebrates. We identified such a regulatory element for Tbx5 and demonstrated Hox genes are essential, direct regulators. While the importance of Hox genes in regulating embryonic development is clear, Hox targets and the ways in which each protein executes its specific function are not known. We reveal how nested Hox expression along the rostro-caudal axis restricts Tbx5 expression to forelimb. We demonstrate that Hoxc9, which is expressed in caudal LPM where Tbx5 is not expressed, can form a repressive complex on the Tbx5 forelimb regulatory element. This repressive capacity is limited to Hox proteins expressed in caudal LPM and carried out by two separate protein domains in Hoxc9. Forelimb-restricted expression of Tbx5 and ultimately forelimb formation is therefore achieved through co-option of two characteristics of Hox genes; their colinear expression along the body axis and the functional specificity of different paralogs. Active complexes can be formed by Hox PG proteins present throughout the rostral-caudal LPM while restriction of Tbx5 expression is achieved by superimposing a dominant repressive (Hoxc9) complex that determines the caudal boundary of Tbx5 expression. Our results reveal the regulatory mechanism that ensures emergence of the forelimbs at the correct position along the body. Acquisition of this regulatory element would have been critical for the evolution of limbs in vertebrates and modulation of the factors we have identified can be molecular drivers of the diversity in limb morphology.
    PLoS Genetics 03/2014; 10(3):e1004245. · 8.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The locomotory appendages of vertebrates have undergone significant changes during evolution, which likely promoted a wide range of adaptive strategies. These appendages first evolved as unpaired finfolds in the dorsal midline of early chordates, more than 500 million years ago. Later on, during vertebrates' radiation, two sets of locomotory appendages emerged, developing from both sides of the latero-ventral body wall. The morphology of these paired fins in fishes at different phylogenetic positions suggests an evolutionary tendency for increasing elaboration of the endoskeleton and concomitant reduction of the distal dermoskeleton. This evolutionary process culminated with the origin of limbs in the lineages leading to tetrapods. The developmental programs responsible for the evolution of vertebrate appendages have been a major topic for evolutionary developmental biology recently. Gene expression comparisons performed in chordates explored how these mechanisms were transferred from a midline to latero-ventral position. On another front, gene function assays have begun to test classical hypotheses concerning the transition from fish fins to tetrapod limbs. In this review, we highlight these recent findings on the evolution of vertebrate fin development. First, we discuss new perspectives on the transition from midline to paired appendages focus on (i) origin and molecular regionalization of the lateral plate mesoderm and (ii) novel ectodermic competency zones for fin induction. Next, we review recent work exploring how tetrapod limbs evolved from fish fins, considering (i) molecular and structural changes in the distal ectoderm of fins and (ii) modulation of 5'HoxD transcription during fin endoskeleton development. J. Exp. Zool. (Mol. Dev. Evol.) 9999B: XX-XX, 2014. © 2014 Wiley Periodicals, Inc.
    Journal of Experimental Zoology Part B Molecular and Developmental Evolution 02/2014; · 2.12 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In developmental and evolutionary biology, particular emphasis has been given to the relationship between transcription factors and the cognate cis-regulatory elements of their target genes. These constitute the gene regulatory networks that control expression and are assumed to causally determine the formation of structures and body plans. Comparative analysis has, however, established a broad sequence homology among species that nonetheless display quite different anatomies. Transgenic experiments have also confirmed that many developmentally important elements are, in fact, functionally interchangeable. Although dependent upon the appropriate degree of gene expression, the actual construction of specific structures appears not directly linked to the functions of gene products alone. Instead, the self-formation of complex patterns, due in large part to epigenetic and non-genetic determinants, remains a persisting theme in the study of ontogeny and regenerative medicine. Recent evidence indeed points to the existence of a self-organizing process, operating through a set of intrinsic rules and forces, which imposes coordination and a holistic order upon cells and tissue. This has been repeatedly demonstrated in experiments on regeneration as well as in the autonomous formation of structures in vitro. The process cannot be wholly attributed to the functional outcome of protein-protein interactions or to concentration gradients of diffusible chemicals. This phenomenon is examined here along with some of the methodological and theoretical approaches that are now used in understanding the causal basis for self-organization in development and its evolution.
    Theory in Biosciences 04/2014; · 0.93 Impact Factor

Full-text

Download
1 Download
Available from