Interleukin-3 stimulation of mcl-1 gene transcription involves activation of the PU.1 transcription factor through a p38 mitogen-activated protein kinase-dependent pathway.

Institute of Molecular Biology, Academia Sinica, 128 Yen-Jiou Yuan Road, Section 2, Nankang, Taipei 11529, Taiwan, Republic of China.
Molecular and Cellular Biology (Impact Factor: 5.04). 04/2003; 23(6):1896-909. DOI: 10.1128/MCB.23.6.1896-1909.2003
Source: PubMed

ABSTRACT We have previously demonstrated that the antiapoptotic gene mcl-1 is activated by interleukin-3 (IL-3) in Ba/F3 pro-B cells through two promoter elements designated the CRE-2 and SIE motifs. While the CRE-2-binding complex contains the CREB protein and is activated by IL-3 through the phosphatidylinositol 3-kinase/Akt-dependent pathway, the identity and cytokine activation pathway of the SIE-binding complex remains unclear. In this report, we demonstrated that PU.1 is one component of the SIE-binding complex. A chromatin immunoprecipitation assay further confirmed that PU.1 binds to the mcl-1 promoter region containing the SIE motif in vivo. While IL-3 stimulation does not significantly alter the SIE-binding activity of PU.1, it markedly increases PU.1's transactivation activity. The latter effect coincides with the increased phosphorylation of PU.1 following IL-3 activation of a p38 mitogen-activated protein kinase (p38(MAPK))-dependent pathway. A serine-to-alanine substitution at position 142 significantly weakens PU.1's ability to be phosphorylated by the p38(MAPK) immunocomplex. Furthermore, this S142A mutant is impaired in the ability to be further stimulated by IL-3 to transactivate the mcl-1 reporter through the SIE motif. Taken together, our results demonstrate that IL-3 stimulation of mcl-1 gene transcription through the SIE motif involves phosphorylation of PU.1 at serine 142 by a p38(MAPK)-dependent pathway.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Esophageal squamous cell carcinoma (ESCC) is one of the most lethal malignancies with a 5-year survival rate less than 15%. Understanding of the molecular mechanisms involved in the pathogenesis of ESCC becomes critical to develop more effective treatments. Mcl-1 expression was measured by reverse transcription (RT)-PCR and Western blotting. Human Mcl-1 promoter activity was evaluated by reporter gene assay. The interactions between DNA and transcription factors were confirmed by electrophoretic mobility shift assay (EMSA) in vitro and by chromatin immunoprecipitation (ChIP) assay in cells. Four human ESCC cell lines, TE-1, Eca109, KYSE150 and KYSE510, are revealed increased levels of Mcl-1 mRNA and protein compare with HaCaT, an immortal non-tumorigenic cell line. Results of reporter gene assays demonstrate that human Mcl-1 promoter activity is decreased by mutation of kappaB binding site, specific NF-kappaB inhibitor Bay11-7082 or dominant inhibitory molecule DNMIkappaBalpha in TE-1 and KYSE150 cell lines. Mcl-1 protein level is also attenuated by Bay11-7082 treatment or co-transfection of DNMIkappaBalpha in TE-1 and KYSE150 cells. EMSA results indicate that NF-kappaB subunits p50 and p65 bind to human Mcl-1-kappaB probe in vitro. ChIP assay further confirm p50 and p65 directly bind to human Mcl-1 promoter in intact cells, by which regulates Mcl-1 expression and contributes to the viability of TE-1 cells. Our data provided evidence that one of the mechanisms of Mcl-1 expression in human ESCC is regulated by the activation of NF-kappaB signaling. The newly identified mechanism might provide a scientific basis for developing effective approaches to treatment human ESCC.
    BMC Cancer 02/2014; 14(1):98. · 3.32 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Macrophages are cellular targets for infection by bacteria and viruses. The fate of infected macrophages plays a key role in determining the outcome of the host immune response. Apoptotic cell death of macrophages is considered to be a protective host defense that eliminates pathogens and infected cells. In this study, we investigated the involvement of Notch signaling in regulating apoptosis in macrophages treated with tuberculin purified protein derivative (PPD). Murine bone marrow-derived macrophages (BMMs) treated with PPD or infected with Mycobacterium bovis Bacillus Calmette-Guérin (BCG) induced upregulation of Notch1. This upregulation correlated well with the upregulation of the anti-apoptotic gene mcl-1 both at the transcriptional and translational levels. Decreased levels of Notch1 and Mcl-1 were observed in BMM treated with PPD when a gamma secretase inhibitor (GSI), which inhibits the processing of Notch receptors, was used. Moreover, silencing Notch1 in the macrophage-like cell line RAW264.7 decreased Mcl-1 protein expression, suggesting that Notch1 is critical for Mcl-1 expression in macrophages. A significant increase in apoptotic cells was observed upon treatment of BMM with PPD in the presence of GSI compared to the vehicle-control treated cells. Finally, analysis of the mcl-1 promoter in humans and mice revealed a conserved potential CSL/RBP-Jκ binding site. The association of Notch1 with the mcl-1 promoter was confirmed by chromatin immunoprecipitation. Taken together, these results indicate that Notch1 inhibits apoptosis of macrophages stimulated with PPD by directly controlling the mcl-1 promoter.Cellular & Molecular Immunology advance online publication, 22 July 2013; doi:10.1038/cmi.2013.22.
    Cellular & molecular immunology 07/2013; · 4.19 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Mutations of the FMS-like tyrosine kinase 3 (FLT3) have been reported in about a third of patients with acute myeloid leukemia (AML). The presence of FLT3 mutations confers a poor prognosis. Thus, pharmacological inhibitors of FLT3 are of therapeutic interest for AML. Gö6976 is an indolocarbazole with a similar structural backbone to staurosporine. In the present study, we demonstrated that Gö6976 displays a potent inhibitory activity against recombinant FLT3 using an in vitro kinase assay, with an IC50 value of 0.7nM. Gö6976 markedly inhibited the proliferation of human leukemia cells having FLT3-ITD such as MV4-11 and MOLM13. We also observed that Gö6976 showed minimal toxicity for human normal CD34(+) cells. Gö6976 suppressed the phosphorylation of FLT3 and downstream signaling molecules such as STAT3/5, Erk1/2, and Akt in MV4-11 and MOLM13 cells. Interestingly, induction of apoptosis by Gö6976 was associated with rapid and pronounced down-regulation of the anti-apoptotic protein survivin and MCL-1. Suppression of survivin protein expression by Gö6976 was due to the inhibition of transcription via the suppression of STAT3/5. On the other hand, Gö6976 induced proteasome-mediated degradation of MCL-1. Previously described FLT3 inhibitors such as PKC412 are bound by the human plasma protein, α1-acid glycoprotein, resulting in diminished inhibitory activity against FLT3. In contrast, we found that Gö6976 potently inhibited phosphorylation of FLT3 and exerted cytotoxicity in the presence of human serum. In conclusion, Gö6976 is a potent FLT3 inhibitor that displays a significant antiproliferative activity against leukemia cells with FLT3-ITD through the profound down-regulation of survivin and MCL-1.
    Biochemical pharmacology 04/2014; · 4.25 Impact Factor

Full-text (2 Sources)

Available from
May 15, 2014

Similar Publications