Variability in apoptotic response to poliovirus infection

M.P. Chumakov Institute of Poliomyelitis and Viral Encephalitides, Russian Academy of Medical Sciences, Moscow Region 142782, Russia.
Virology (Impact Factor: 3.28). 02/2005; 331(2):292-306. DOI: 10.1016/j.virol.2004.10.038
Source: PubMed

ABSTRACT In several cell types, poliovirus activates the apoptotic program, implementation of which is suppressed by viral antiapoptotic functions. In such cells, productive infection leads to a necrotic cytopathic effect (CPE), while abortive reproduction, associated with inadequate viral antiapoptotic functions, results in apoptosis. Here, we describe two other types of cell response to poliovirus infection. Murine L20B cells expressing human poliovirus receptor responded to the infection by both CPE and apoptosis concurrently. Interruption of productive infection decreased rather than increased the proportion of apoptotic cells. Productive infection was accompanied by the early efflux of cytochrome c from the mitochondria in a proportion of cells and by activation of DEVD-specific caspases. Inactivation of caspase-9 resulted in a marked, but incomplete, prevention of the apoptotic response of these cells to viral infection. Thus, the poliovirus-triggered apoptotic program in L20B cells was not completely suppressed by the viral antiapoptotic functions. In contrast, human rhabdomyosarcoma RD cells did not develop appreciable apoptosis during productive or abortive infection, exhibiting inefficient efflux of cytochrome c from mitochondria and no marked activation of DEVD-specific caspases. The cells were also refractory to several nonviral apoptosis inducers. Nevertheless, typical caspase-dependent signs of apoptosis in a proportion of RD cells were observed after cessation of viral reproduction. Such "late" apoptosis was also observed in productively infected HeLa cells. In addition, a tiny proportion of all studied cells were TUNEL positive even in the presence of a caspase inhibitor. Degradation of DNA in such cells appeared to be a postmortem phenomenon. Biological relevance of variable host responses to viral infection is discussed.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The virus-encoded viroporins are known to modify membrane permeability and play an essential role in virus budding. Here, a comparative analysis of the membrane permeabilization capacity of a number of viroporins was performed in baby hamster kidney cells. Synthesis of 6K protein from Sindbis virus, E from mouse hepatitis virus, M2 from influenza A virus, and 2B and 3A from poliovirus enhanced membrane permeability to different extents. We show that two proteins from hepatitis C virus, p7 and NS4A, also display viroporin activity to a level comparable to 6K protein. In addition to their capacity to disrupt ionic cellular homeostasis and promote bacterial cell lysis, the expressed viroporins were able to induce cell death. Degradation of internucleosomal DNA and generation of apoptotic bodies were observed upon viroporin expression. Consistently, cleavage of translation initiation factor 4GI and poly-(ADP-ribose) polymerase indicated activation of effector caspase-3. We found that poliovirus 2B localizes partially in mitochondria and induces an anomalous perinuclear distribution of these organelles. Mitochondria morphology was also altered after expression of other viroporins. Finally, detection of cytochrome c release from mitochondria suggests involvement of the mitochondrial pathway in viroporin-induced apoptosis. These findings suggest that viroporins induce caspase-dependent programmed cell death.
    Cellular Microbiology 03/2008; 10(2):437-51. DOI:10.1111/j.1462-5822.2007.01057.x · 4.82 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Hepatitis is caused by hepatitis viruses, but hepatitis or hepatocellular enzyme abnormalities is sometimes associated with infection by the hepatiticomimetic viruses. The direct and indirect effects of infection with hepatiticomimetic viruses were examined in two human hepatocyte systems. Poliovirus, adenovirus, and herpes simplex virus (HSV) induced cytopathology in Hep G2 cells. Measles virus caused no change in hepatocytes. Poliovirus infection did not affect cellular protein synthesis, and the peak of hepatocellular enzyme release coincided with the peak of virus release. The increase in adenovirus protein synthesis correlated with the decrease of transferrin synthesis, and enzyme release was not prominent. HSV induced viral protein synthesis with enhanced processing and inhibition of synthesis of alpha1-antitrypsin. The peak of enzyme release was later than the peak of virus release. In primary hepatocytes, poliovirus, adenovirus, and induced extensive cytopathology and enzyme release, and VZV caused cytopathology and significant but minute enzyme release. The ratio of lactate dehydrogenase to aspartate aminotransferase release was larger in poliovirus infection in both hepatocytes than in HSV or VZV infection. Although poliovirus and adenovirus are released by cytolysis and HSV and VZV are secreted by exocytosis of cytoplasmic vacuoles, enzyme release was independent of the type of virus release. Adenovirus showed strong cytotoxicity but did not modify the membrane nor cause enzyme release. Enzyme release was associated with modification of the surface membrane due to apoptosis with poliovirus and necrosis with HSV. Consequently hepatocellular injury by viral infection did not reflect the amount or pattern of hepatocellular enzyme release.
    Journal of Medical Virology 04/2007; 79(4):413-25. DOI:10.1002/jmv.20783 · 2.22 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Virus infection may induce host cell death by apoptosis, but some DNA viruses are capable of preventing this process. RNA viruses were thought not to display anti-apoptotic activities, as their spread appears to benefit from a rapid induction of cell death. Here, we report an antiapoptotic activity in the Picornavirus Coxsackievirus B4 (CVB4). CVB4 infection of HeLa cells induced negligible apoptosis over a period of 10 h. However, infected cells developed resistance to drug-induced apoptosis using staurosporine and actinomycin D and to death receptor-induced apoptosis using tumor necrosis factor-related apoptosis-inducing ligand. Despite this resistance, the apoptotic machinery was nonetheless fully activated in these drug-treated infected cells because the levels of pro-caspase-3 processing to its active form were similar to control cells. However, the DEVDase (Asp-Glu-Val-Asp protease) activity of the processed caspase was significantly inhibited in the virus-infected staurosporine-treated cells compared with drug treatment alone. Likewise, extracts of CVB4-infected cells suppressed recombinant caspase-3 activity in vitro. Immunoprecipitation of activated caspase-3 from radiolabeled virus-infected cells revealed the co-precipitation of a 48-kDa protein that was tentatively identified as viral protein 2BC. Recombinant caspase-3 was found to co-precipitate with virus protein 2BC. Finally, when protein 2BC was expressed in HeLa cells, both staurosporine-induced apoptosis and in vitro caspase-3 DEVDase activity were significantly reduced. Taken together these data imply that CVB4 infection suppresses apoptosis through virus protein 2BC associating with caspase-3 and inhibiting its function. Thus, 2BC is the first reported RNA virus inhibitor of apoptosis protein.
    Journal of Biological Chemistry 07/2006; 281(24):16296-304. DOI:10.1074/jbc.M510662200 · 4.60 Impact Factor