Article

Loss-of-Function Mutation in Tryptophan Hydroxylase-2 Identified in Unipolar Major Depression

Department of Cell Biology, Center for Models of Human Disease, Institute for Genome Sciences and Policy, Duke University Medical Center, Durham, NC 27710, USA.
Neuron (Impact Factor: 15.98). 02/2005; 45(1):11-6. DOI: 10.1016/j.neuron.2004.12.014
Source: PubMed

ABSTRACT Dysregulation of central serotonin neurotransmission has been widely suspected as an important contributor to major depression. Here, we identify a (G1463A) single nucleotide polymorphism (SNP) in the rate-limiting enzyme of neuronal serotonin synthesis, human tryptophan hydroxylase-2 (hTPH2). The functional SNP in hTPH2 replaces the highly conserved Arg441 with His, which results in approximately 80% loss of function in serotonin production when hTPH2 is expressed in PC12 cells. Strikingly, SNP analysis in a cohort of 87 patients with unipolar major depression revealed that nine patients carried the mutant (1463A) allele, while among 219 controls, three subjects carried this mutation. In addition, this functional SNP was not found in a cohort of 60 bipolar disorder patients. Identification of a loss-of-function mutation in hTPH2 suggests that defect in brain serotonin synthesis may represent an important risk factor for unipolar major depression.

Download full-text

Full-text

Available from: Lauranell Burch, Nov 17, 2014
1 Follower
 · 
120 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Serotonin (5-HT) is a neurotransmitter involved in many aspects of the neuronal function. The synthesis of 5-HT is initiated by the hydroxylation of tryptophan, catalyzed by tryptophan hydroxylase (TPH). Two isoforms of TPH (TPH1 and TPH2) have been identified, with TPH2 almost exclusively expressed in the brain. Following TPH2 discovery, it was reported that polymorphisms of both gene and non-coding regions are associated with a spectrum of psychiatric disorders. Thus, insights into the mechanisms that specifically regulate TPH2 expression and its modulation by exogenous stimuli may represent a new therapeutic approach to modify serotonergic neurotransmission. To this aim, a CNS-originated cell line expressing TPH2 endogenously represents a valid model system. In this study, we report that TPH2 transcript and protein are modulated by neuronal differentiation in the cell line A1 mes-c-myc (A1). Moreover, we show luciferase activity driven by the human TPH2 promoter region and demonstrate that upon mutation of the NRSF/REST responsive element, the promoter activity strongly increases with cell differentiation. Our data suggest that A1 cells could represent a model system, allowing an insight into the mechanisms of regulation of TPH2 and to identify novel therapeutic targets in the development of drugs for the management of psychiatric disorders.
    Journal of Neurochemistry 12/2012; 123(6):963-970. DOI:10.1111/jnc.12004 · 4.24 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Inherited or non-inherited dilated cardiomyopathy (DCM) patients develop varied disease phenotypes leading to death after developing congestive heart failure (HF) or sudden death with mild or no overt HF symptoms, suggesting that environmental and/or genetic factors may modify the disease phenotype of DCM. In this study, we sought to explore unknown genetic factors affecting the disease phenotype of monogenic inherited human DCM. Knock-in mice bearing a sarcomeric protein mutation that causes DCM were created on different genetic backgrounds; BALB/c and C57Bl/6. DCM mice on the BALB/c background showed cardiac enlargement and systolic dysfunction and developed congestive HF before died. In contrast, DCM mice on the C57Bl/6 background developed no overt HF symptoms and died suddenly, although they showed considerable cardiac enlargement and systolic dysfunction. BALB/c mice have brain serotonin dysfunction due to a single nucleotide polymorphism (SNP) in tryptophan hydroxylase 2 (TPH2). Brain serotonin dysfunction plays a critical role in depression and anxiety and BALB/c mice exhibit depression- and anxiety-related behaviors. Since depression is common and associated with poor prognosis in HF patients, we examined therapeutic effects of anti-depression drug paroxetine and anti-anxiety drug buspirone that could improve the brain serotonin function in mice. Both drugs reduced cardiac enlargement and improved systolic dysfunction and symptoms of severe congestive HF in DCM mice on the BALB/c background. These results strongly suggest that genetic backgrounds involving brain serotonin dysfunction, such as TPH2 gene SNP, may play an important role in the development of congestive HF in DCM.
    Journal of Molecular and Cellular Cardiology 08/2012; 53(6). DOI:10.1016/j.yjmcc.2012.08.006 · 5.22 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: BACKGROUND: It has been well established that both genes and non-shared environment contribute substantially to the underlying aetiology of major depressive disorder (MDD). A comprehensive overview of genetic research in MDD is presented.Method Papers were retrieved from PubMed up to December 2011, using many keywords including: depression, major depressive disorder, genetics, rare variants, gene-environment, whole genome, epigenetics, and specific candidate genes and variants. These were combined in a variety of permutations. RESULTS: Linkage studies have yielded some promising chromosomal regions in MDD. However, there is a continued lack of consistency in association studies, in both candidate gene and genome-wide association studies (GWAS). Numerous factors may account for variable results including the use of different diagnostic approaches, small samples in early studies, population stratification, epigenetic phenomena, copy number variation (CNV), rare variation, and phenotypic and allelic heterogeneity. The conflicting results are also probably, in part, a consequence of environmental factors not being considered or controlled for. CONCLUSIONS: Each research group has to identify what issues their sample may best address. We suggest that, where possible, more emphasis should be placed on the environment in molecular behavioural genetics to identify individuals at environmental high risk in addition to genetic high risk. Sequencing should be used to identify rare and alternative variation that may act as a risk factor, and a systems biology approach including gene-gene interactions and pathway analyses would be advantageous. GWAS may require even larger samples with reliably defined (sub)phenotypes.
    Psychological Medicine 06/2012; DOI:10.1017/S0033291712001286 · 5.43 Impact Factor