Article

N-cadherin mediates endocytosis of Candida albicans by endothelial cells

University of California, Los Angeles, Los Ángeles, California, United States
Journal of Biological Chemistry (Impact Factor: 4.6). 04/2005; 280(11):10455-61. DOI: 10.1074/jbc.M412592200
Source: PubMed

ABSTRACT Candida albicans is the most common cause of fungal bloodstream infections. To invade the deep tissues, blood-borne organisms must cross the endothelial cell lining of the vasculature. We have found previously that C. albicans hyphae, but not blastospores, invade endothelial cells in vitro by inducing their own endocytosis. Therefore, we set out to identify the endothelial cell receptor that mediates the endocytosis of C. albicans. We determined that endocytosis of C. albicans was not mediated by bridging molecules in the serum and that it was partially dependent on the presence of extracellular calcium. Using an affinity purification procedure, we discovered that endothelial cell N-cadherin bound to C. albicans hyphae but not blastospores. N-cadherin also co-localized with C. albicans hyphae that were being endocytosed by endothelial cells. Chinese hamster ovary (CHO) cells expressing human N-cadherin endocytosed significantly more C. albicans hyphae than did CHO cells expressing either human VE-cadherin or no human cadherins. The expression of N-cadherin by the CHO cells resulted in enhanced endocytosis of hyphae, but not blastospores, indicating the selectivity of the N-cadherin-mediated endocytosis. Down-regulation of endothelial cell N-cadherin expression with small interfering RNA significantly inhibited the endocytosis of C. albicans hyphae. Therefore, a novel function of N-cadherin is that it serves as an endothelial cell receptor, which mediates the endocytosis of C. albicans.

Download full-text

Full-text

Available from: Scott G Filler, Apr 22, 2015
1 Follower
 · 
138 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Candida albicans frequently causes superficial infections by invading and damaging epithelial cells, but may also cause systemic infections by penetrating through epithelial barriers. C. albicans is a remarkable pathogen because it can invade epithelial cells via two distinct mechanisms: induced endocytosis, analogous to facultative intracellular enteropathogenic bacteria, and active penetration, similar to plant pathogenic fungi. Here we investigated the contributions of the two invasion routes of C. albicans to epithelial invasion. Using selective cellular inhibition approaches and differential fluorescence microscopy, we demonstrate that induced endocytosis contributes considerably to the early time points of invasion, while active penetration represents the dominant epithelial invasion route. Although induced endocytosis depends mainly on Als3-E-cadherin interactions, we observed E-cadherin independent induced endocytosis. Finally, we provide evidence of a protective role for serum factors in oral infection: human serum strongly inhibited C. albicans adhesion to, invasion and damage of oral epithelial cells.
    PLoS ONE 05/2012; 7(5):e36952. DOI:10.1371/journal.pone.0036952 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The frequency of severe systemic fungal diseases has increased in the last few decades. The clinical use of antibacterial drugs, immunosuppressive agents after organ transplantation, cancer chemotherapy, and advances in surgery are associated with increasing risk of fungal infections. Opportunistic pathogens from the genera Candida and Aspergillus as well as pathogenic fungi from the genus Cryptococcus can invade human organism and may lead to mucosal and skin infections or to deep-seated mycoses of almost all inner organs, especially in immunocompromised patients. Nowadays, there are some effective antifungal agents, but, unfortunately, some of the pathogenic species show increasing resistance. The identification of fungal virulence factors and recognition of mechanisms of pathogenesis may lead to development of new efficient antifungal therapies. This review is focused on major virulence factors of the most common fungal pathogens of humans: Candida albicans, Aspergillus fumigatus and Cryptococcus neoformans. The adherence to host cells and tissues, secretion of hydrolytic enzymes, phenotypic switching and morphological dimorphism contribute to C. albicans virulence. The ability to grow at 37 degrees C, capsule synthesis and melanin formation are important virulence factors of C. neoformans. The putative virulence factors of A. fumigatus include production of pigments, adhesion molecules present on the cell surface and secretion of hydrolytic enzymes and toxins.
    Acta biochimica Polonica 07/2009; 56(2):211-24. · 1.39 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Candida albicans is a major cause of oropharyngeal, vulvovaginal and haematogenously disseminated candidiasis. Endocytosis of C. albicans hyphae by host cells is a prerequisite for tissue invasion. This internalization involves interactions between the fungal invasin Als3 and host E- or N-cadherin. Als3 shares some structural similarity with InlA, a major invasion protein of the bacterium Listeria monocytogenes. InlA mediates entry of L. monocytogenes into host cells through binding to E-cadherin. A role in internalization, for a non-classical stimulation of the clathrin-dependent endocytosis machinery, was recently highlighted. Based on the similarities between the C. albicans and L. monocytogenes invasion proteins, we studied the role of clathrin in the internalization of C. albicans. Using live-cell imaging and indirect immunofluorescence of epithelial cells infected with C. albicans, we observed that host E-cadherin, clathrin, dynamin and cortactin accumulated at sites of C. albicans internalization. Similarly, in endothelial cells, host N-cadherin, clathrin and cortactin accumulated at sites of fungal endocytosis. Furthermore, clathrin, dynamin or cortactin depletion strongly inhibited C. albicans internalization by epithelial cells. Finally, beads coated with Als3 were internalized in a clathrin-dependent manner. These data indicate that C. albicans, like L. monocytogenes, hijacks the clathrin-dependent endocytic machinery to invade host cells.
    Cellular Microbiology 04/2009; 11(8):1179-89. DOI:10.1111/j.1462-5822.2009.01319.x · 4.82 Impact Factor