Nucleotides and Pronucleotides of 2,2-Bis(hydroxymethyl)methylenecyclopropane Analogues of Purine Nucleosides: Synthesis and Antiviral Activity

Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama, United States
Journal of Medicinal Chemistry (Impact Factor: 5.45). 02/2005; 48(1):91-9. DOI: 10.1021/jm040149b
Source: PubMed


Phenylmethylphosphor-L-alaninate pronucleotides 7a, 7b, 8a, and 8b, cyclic phosphates 10a and 10b, and phosphates 11a and 11b derived from 2,2-bis(hydroxymethyl)methylenecyclopropane analogues 1a, 1b, 2a, and 2b were synthesized and evaluated for their antiviral activity. An improved protocol for the synthesis of analogues 1a, 1b, 2a, and 2b is also described. Phosphate 11a was the most effective agent against human and murine cytomegalovirus (EC(50) 0.25-1.1 microM). The Z-pronucleotides 7a and 7b had EC(50) 3.6-25.2 and 3-18.4 microM, respectively. The EC(50) of cyclic phosphate 10a was 6.0-20 microM. The activity against Epstein-Barr (EBV) was assay-dependent. Pronucleotides 7a and 7b and phosphate 11a had EC(50) 2.3-3.4 microM against EBV/H-1, but 7b was cytotoxic (CC(50) 3.8 microM). Cyclic phosphate 10a was the only compound effective against EBV/Daudi (EC(50) 0.96 microM), but it was inactive in H-1 cells. Pronucleotide 7a was active against varicella zoster virus with EC(50) 6.3 and 7.3 microM, respectively, and hepatitis B virus (HBV, EC(50) 4.1 microM). Cyclic phosphate 10a was the most effective analogue against HBV (EC(50) 0.8 microM).

5 Reads
  • [Show abstract] [Hide abstract]
    ABSTRACT: During the past decade, nucleotide analogs have emerged as novel antiviral agents against hepatitis B virus. Adefovir dipivoxil, a prototype phosphonate analog, has been approved for chronic hepatitis B virus therapy, and additional phosphonate analogs and di- and tri-nucleotides are under development. Several innovative prodrug derivatizations have also been reported to improve the oral bioavailability of nucleotide analogs, which usually carry a negative charge.
    Current Opinion in Pharmacology 11/2005; 5(5):520-8. DOI:10.1016/j.coph.2005.04.019 · 4.60 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The concept of using antisense oligonucleotides to interfere with gene expression offers a new therapeutic strategy for the treatment of diseases resulting from overexpression or dysfunction of certain genes. Phosphorodiamidate morpholino oligomers (PMOs) represent a neutral class of antisense agents that interfere with target gene expression either by binding and sterically blocking the assembly of translation machinery, resulting in inhibition of translation, or by altering splicing of pre-mRNA. Studies in animal models and human clinical trials have demonstrated a high degree of functional bioavailability in several target organs. Preclinical and clinical studies have shown that PMOs demonstrate improved efficacy, excellent kinetic behavior, biological stability, and a good safety profile. We conclude from the emerging data that PMOs display advantageous pharmaceutical properties in comparison with other antisense strategies.
    Current Opinion in Pharmacology 11/2005; 5(5):550-5. DOI:10.1016/j.coph.2005.07.001 · 4.60 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We have characterized the conformational properties of the C8-deoxyguanosine (C8-dG) nucleoside adduct, 8-(2"-hydroxyphenyl)-2'-dG (1), which is a potential biomarker for exposure to phenolic carcinogens. Adduct 1 possesses the unique ability to phototautomerize, through an excited-state intramolecular proton transfer (ESIPT) process, to generate its keto form. This tautomerization depends on the presence of an intramolecular hydrogen (H)-bond between the phenolic OH and the imine nitrogen (N7) and has permitted insight into the equilibrium ground states of adduct 1. The results of our studies demonstrate that adduct 1 undergoes an ESIPT despite preferring a nonplanar "twisted" conformation that is imposed by the deoxyribose (dR) sugar moiety. Interestingly, a planar conformation of adduct 1 is also formed in certain aprotic solvents due to the anchoring effect of the intramolecular H-bond. Our results provide a basis for future studies aimed at determining the conformations of adduct 1 within DNA that will aid in our understanding of phenol-mediated carcinogenesis.
    The Journal of Physical Chemistry A 06/2006; 110(19):6224-30. DOI:10.1021/jp0617571 · 2.69 Impact Factor
Show more