CECR2, a protein involved in neurulation, forms a novel chromatin remodeling complex with SNF2L.

Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada.
Human Molecular Genetics (Impact Factor: 6.68). 03/2005; 14(4):513-24. DOI: 10.1093/hmg/ddi048
Source: PubMed

ABSTRACT Chromatin remodeling complexes play critical roles in development. Here we describe a transcription factor, CECR2, which is involved in neurulation and chromatin remodeling. CECR2 shows complex alternative splicing, but all variants contain DDT and bromodomain motifs. A mutant mouse line was generated from an embryonic stem cell line containing a genetrap within Cecr2. Reporter gene expression demonstrated Cecr2 expression to be predominantly neural in the embryo. Mice homozygous for the Cecr2 genetrap-induced mutation show a high penetrance of the neural tube defect exencephaly, the human equivalent of anencephaly, in a strain-dependent fashion. Biochemical isolation of CECR2 revealed the presence of this protein as a component of a novel heterodimeric complex termed CECR2-containing remodeling factor (CERF). CERF comprises CECR2 and the ATP-dependent chromatin remodeler SNF2L, a mammalian ISWI ortholog expressed predominantly in the central nervous system. CERF is capable of remodeling chromatin in vitro and displays an ATP hydrolyzing activity that is stimulated by nucleosomes. Together, these data identify a novel chromatin remodeling complex with a critical role in neurulation.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Geminin is a nucleoprotein that can directly bind chromatin regulatory complexes to modulate gene expression during development. Geminin knockout mouse embryos are preimplantation lethal by the 32-cell stage, precluding in vivo study of Geminin's role in neural development. Therefore, here we used a conditional Geminin allele in combination with several Cre-driver lines to define an essential role for Geminin during mammalian neural tube (NT) formation and patterning. Geminin was required in the NT within a critical developmental time window (embryonic day 8.5-10.5), when NT patterning and closure occurs. Geminin excision at these stages resulted in strongly diminished expression of genes that mark and promote dorsal NT identities and decreased differentiation of ventral motor neurons, resulting in completely penetrant NT defects, while excision after embryonic day 10.5 did not result in NT defects. When Geminin was deleted specifically in the spinal NT, both NT defects and axial skeleton defects were observed, but neither defect occurred when Geminin was excised in paraxial mesenchyme, indicating a tissue autonomous requirement for Geminin in developing neuroectoderm. Despite a potential role for Geminin in cell cycle control, we found no evidence of proliferation defects or altered apoptosis. Comparisons of gene expression in the NT of Geminin mutant versus wild-type siblings at embryonic day 10.5 revealed decreased expression of key regulators of neurogenesis, including neurogenic bHLH transcription factors and dorsal interneuron progenitor markers. Together, these data demonstrate a requirement for Geminin for NT patterning and neuronal differentiation during mammalian neurulation in vivo.
    Developmental Biology 07/2014; 393(1). DOI:10.1016/j.ydbio.2014.06.021 · 3.64 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Regulation of chromatin structure is an essential component of the DNA damage response (DDR), which effectively preserves the integrity of DNA by a network of multiple DNA repair and associated signaling pathways. Within the DDR, chromatin is modified and remodeled to facilitate efficient DNA access, to control the activity of repair proteins and to mediate signaling. The mammalian ISWI family has recently emerged as one of the major ATP-dependent chromatin remodeling complex families that function in the DDR, as it is implicated in at least 3 major DNA repair pathways: homologous recombination, non-homologous end-joining and nucleotide excision repair. In this review, we discuss the various manners through which different ISWI complexes regulate DNA repair and how they are targeted to chromatin containing damaged DNA.
    Cell cycle (Georgetown, Tex.) 10/2014; 13(19):3016--3025. DOI:10.4161/15384101.2014.956551 · 5.01 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The progression to advanced stage cancer requires changes in many characteristics of a cell. These changes are usually initiated through spontaneous mutation. As a result of these mutations, gene expression is almost invariably altered allowing the cell to acquire tumor-promoting characteristics. These abnormal gene expression patterns are in part enabled by the posttranslational modification and remodeling of nucleosomes in chromatin. These chromatin modifications are established by a functionally diverse family of enzymes including histone and DNA-modifying complexes, histone deposition pathways, and chromatin remodeling complexes. Because the modifications these enzymes deposit are essential for maintaining tumor-promoting gene expression, they have recently attracted much interest as novel therapeutic targets. One class of enzyme that has not generated much interest is the chromatin remodeling complexes. In this review, we will present evidence from the literature that these enzymes have both causal and enabling roles in the transition to advanced stage cancers; as such, they should be seriously considered as high-value therapeutic targets. Previously published strategies for discovering small molecule regulators to these complexes are described. We close with thoughts on future research, the field should perform to further develop this potentially novel class of therapeutic target.
    Advances in Cancer Research 01/2014; 121:183-233. DOI:10.1016/B978-0-12-800249-0.00005-6 · 4.26 Impact Factor



Similar Publications