Article

Structural Basis for the Regulation of Insulin-like Growth Factors by IGF Binding Proteins

Max Planck Institut für Biochemie, D-82152 Martinsried, Germany.
Structure (Impact Factor: 6.79). 02/2005; 13(1):155-67. DOI: 10.1016/j.str.2004.11.009
Source: PubMed

ABSTRACT Insulin-like growth factor binding proteins (IGFBPs) control the extracellular distribution, function, and activity of IGFs. Here, we report an X-ray structure of the binary complex of IGF-I and the N-terminal domain of IGFBP-4 (NBP-4, residues 3-82) and a model of the ternary complex of IGF-I, NBP-4, and the C-terminal domain (CBP-4, residues 151-232) derived from diffraction data with weak definition of the C-terminal domain. These structures show how the IGFBPs regulate IGF signaling. Key features of the structures include (1) a disulphide bond ladder that binds to IGF and partially masks the IGF residues responsible for type 1 IGF receptor (IGF-IR) binding, (2) the high-affinity IGF-I interaction site formed by residues 39-82 in a globular fold, and (3) CBP-4 interactions. Although CBP-4 does not bind individually to either IGF-I or NBP-4, in the ternary complex, CBP-4 contacts both and also blocks the IGF-IR binding region of IGF-I.

Download full-text

Full-text

Available from: Magdalena Wisniewska, May 19, 2014
0 Followers
 · 
90 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Fetal growth restriction (FGR) increases the risk of perinatal complications and predisposes the infant to developing metabolic, cardiovascular, and neurological diseases in childhood and adulthood. The pathophysiology underlying FGR remains poorly understood and there is no specific treatment available. Biomarkers for early detection are also lacking. The insulin-like growth factor (IGF) system is an important regulator of fetal growth. IGF-I is the primary regulator of fetal growth, and fetal circulating levels of IGF-I are decreased in FGR. IGF-I activity is influenced by a family of IGF binding proteins (IGFBPs), which bind to IGF-I and decrease its bioavailability. During fetal development the predominant IGF-I binding protein in fetal circulation is IGFBP-1, which is primarily secreted by the fetal liver. IGFBP-1 binds IGF-I and thereby inhibits its bioactivity. Fetal circulating levels of IGF-I are decreased and concentrations of IGFBP-1 are increased in FGR. Phosphorylation of human IGFBP-1 at specific sites markedly increases its binding affinity for IGF-I, further limiting IGF-I bioactivity. Recent experimental evidence suggests that IGFBP-1 phosphorylation is markedly increased in the circulation of FGR fetuses suggesting an important role of IGFBP-1 phosphorylation in the regulation of fetal growth. Understanding of the significance of site-specific IGFBP-1 phosphorylation and how it is regulated to contribute to fetal growth will be an important step in designing strategies for preventing, managing, and/or treating FGR. Furthermore, IGFBP-1 hyperphosphorylation at unique sites may serve as a valuable biomarker for FGR.
    Journal of Cell Communication and Signaling 02/2015; 9(2). DOI:10.1007/s12079-015-0266-x
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Whole genome duplication (WGD) was experienced twice by the vertebrate ancestor (2 rounds; 2R), again by the teleost fish ancestor (3R) and most recently in certain teleost lineages (4R). Consequently, vertebrate gene families are often expanded in 3R and 4R genomes. Arguably, many types of 'functional divergence' present across 2R gene families will exceed that between 3R/4R paralogues of genes comprising 2R families. Accordingly, 4R offers a form of replication of 2R. Examining if this concept has implications for molecular evolutionary research, we studied insulin-like growth factor (IGF) binding proteins (IGFBPs), whose six 2R family members carry IGF hormones and regulate interactions between IGFs and IGF1-receptors (IGF1Rs). Using phylogenomic approaches, we resolved the complete IGFBP repertoire of 4R-derived salmonid fishes (nineteen genes; thirteen more than human) and established evolutionary relationships/nomenclature with respect to WGDs. Traits central to IGFBP action were determined for all genes, including atomic interactions in IGFBP-IGF1/IGF2 complexes regulating IGF-IGF1R binding. Using statistical methods, we demonstrate that attributes of these protein interfaces are overwhelming a product of 2R IGFBP family membership, explain 49-68% of variation in IGFBP mRNA concentration in several different tissues and strongly predict the strength and direction of IGFBP transcriptional regulation under differing nutritional-states. The results support a model where vertebrate IGFBP family members evolved divergent structural attributes to provide distinct competition for IGFs with IGF1Rs, pre-disposing different functions in the regulation of IGF-signaling. Evolution of gene expression acted to ensure the appropriate physiological production of IGFBPs according to their structural specializations, leading to optimal IGF-signaling according to nutritional-status and the endocrine/local mode of action. This study demonstrates that relatively recent gene family expansion can facilitate inference of functional evolution within ancient genetic systems.
    Molecular Biology and Evolution 01/2013; 30(5). DOI:10.1093/molbev/mst017 · 14.31 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Insulin-like growth factor binding proteins (IGFBP-1 to -6) bind insulin-like growth factors-I and -II (IGF-I and IGF-II) with high affinity. These binding proteins maintain IGFs in the circulation and direct them to target tissues, where they promote cell growth, proliferation, differentiation, and survival via the type 1 IGF receptor. IGFBPs also interact with many other molecules, which not only influence their modulation of IGF action but also mediate IGF-independent activities that regulate processes such as cell migration and apoptosis by modulating gene transcription. IGFBPs-1 to -6 are structurally similar proteins consisting of three distinct domains, N-terminal, linker, and C-terminal. There have been major advances in our understanding of IGFBP structure in the last decade and a half. While there is still no structure of an intact IGFBP, several structures of individual N- and C-domains have been solved. The structure of a complex of N-BP-4:IGF-I:C-BP-4 has also been solved, providing a detailed picture of the structural features of the IGF binding site and the mechanism of binding. Structural studies have also identified features important for interaction with extracellular matrix components and integrins. This review summarizes structural studies reported so far and highlights features important for binding not only IGF but also other partners. We also highlight future directions in which structural studies will add to our knowledge of the role played by the IGFBP family in normal growth and development, as well as in disease.
    Frontiers in Endocrinology 03/2012; 3:38. DOI:10.3389/fendo.2012.00038