Article

Sodium and calcium current-mediated pacemaker neurons and respiratory rhythm generation.

Systems Neurobiology Laboratory, Department of Neurobiology, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, California 90095-1763, USA.
Journal of Neuroscience (Impact Factor: 6.75). 02/2005; 25(2):446-53. DOI: 10.1523/JNEUROSCI.2237-04.2005
Source: PubMed

ABSTRACT The breathing motor pattern in mammals originates in brainstem networks. Whether pacemaker neurons play an obligatory role remains a key unanswered question. We performed whole-cell recordings in the preBotzinger Complex in slice preparations from neonatal rodents and tested for pacemaker activity. We observed persistent Na+ current (I(NaP))-mediated bursting in approximately 5% of inspiratory neurons in postnatal day 0 (P0)-P5 and in P8-P10 slices. I(NaP)-mediated bursting was voltage dependent and blocked by 20 mum riluzole (RIL). We found Ca2+ current (I(Ca))-dependent bursting in 7.5% of inspiratory neurons in P8-P10 slices, but in P0-P5 slices these cells were exceedingly rare (0.6%). This bursting was voltage independent and blocked by 100 microm Cd2+ or flufenamic acid (FFA) (10-200 microm), which suggests that a Ca2+-activated inward cationic current (I(CAN)) underlies burst generation. These data substantiate our observation that P0-P5 slices exposed to RIL contain few (if any) pacemaker neurons, yet maintain respiratory rhythm. We also show that 20 nm TTX or coapplication of 20 microm RIL + FFA (100-200 microm) stops the respiratory rhythm, but that adding 2 mum substance P restarts it. We conclude that I(NaP) and I(CAN) enhance neuronal excitability and promote rhythmogenesis, even if their magnitude is insufficient to support bursting-pacemaker activity in individual neurons. When I(NaP) and I(CAN) are removed pharmacologically, the rhythm can be maintained by boosting neural excitability, which is inconsistent with a pacemaker-essential mechanism of respiratory rhythmogenesis by the preBotzinger complex.

0 Bookmarks
 · 
83 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The pre-Bötzinger complex (pre-BötC), a neural structure involved in respiratory rhythm generation, can generate rhythmic bursting activity in vitro that persists after blockade of synaptic inhibition. Experimental studies have identified two mechanisms potentially involved in this activity: one based on the persistent sodium current (INaP) and the other involving calcium (ICa) and/or calcium-activated nonspecific cation (ICAN) currents. In this modeling study, we investigated bursting generated in single neurons and excitatory neural populations with randomly distributed conductances of INaP and ICa. We analyzed the possible roles of these currents, the Na(+)/K(+) pump, synaptic mechanisms, and network interactions in rhythmic bursting generated under different conditions. We show that a population of synaptically coupled excitatory neurons with randomly distributed INaP- and/or ICAN-mediated burst generating mechanisms can operate in different oscillatory regimes with bursting dependent on either current or independent of both. The existence of multiple oscillatory regimes and their state dependence may explain rhythmic activities observed in the pre-BötC under different conditions.
    Progress in brain research 01/2014; 209:1-23. · 4.19 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Selective serotonin reuptake inhibitors (SSRIs) and other antidepressants are often prescribed to ALS patients; however, the impact of these prescriptions on ALS disease progression has not been systematically tested. To determine if SSRIs impact disease progression, fluoxetine (Prozac®) (5 or 10mg/kg) was administered to mutant SOD1 mice during three age ranges: neonatal (postnatal day 5-11 (P5-11)), adult presymptomatic (P30 to end stage), and adult symptomatic (P70 to end stage). Long term adult fluoxetine treatment (started at either P30 or P70 and continuing until end stage) had no significant effect on disease progression. In contrast, neonatal fluoxetine treatment (P5-11) had two effects. First, all animals (mutant SOD1(G93A) and controls: non-transgenic and SOD1(WT)) receiving the highest dose (10mg/kg) had a sustained decrease in weight from P30 onward. Second, the high dose SOD1G93A mice reached end stage ~8 days (~6% decrease in life span) sooner than vehicle and low dose animals due to an increased rate of motor impairment. Fluoxetine increases synaptic serotonin (5-HT) levels, which is known to increase spinal motoneuron excitability. We confirmed that 5-HT increases spinal motoneuron excitability during this neonatal time period, and therefore hypothesized that antagonizing 5-HT receptors during the same time period would improve disease outcome. However, cyproheptadine (1 or 5mg/kg), a 5-HT receptor antagonist, had no effect on disease progression. These results show that a brief period of antidepressant treatment during a critical time window (the transition from neonatal to juvenile states) can be detrimental in ALS mouse models.
    Journal of Neurophysiology 03/2014; · 3.04 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The isolated brainstem of the adult lamprey spontaneously generates respiratory activity. The paratrigeminal respiratory group (pTRG), the proposed respiratory central pattern generator, has been anatomically and functionally characterized. It is sensitive to opioids, neurokinins and acetylcholine. Excitatory amino acids, but not GABA and glycine, play a crucial role in the respiratory rhythmogenesis. These results are corroborated by immunohistochemical data. While only GABA exerts an important modulatory control on the pTRG, both GABA and glycine markedly influence the respiratory frequency via neurons projecting from the vagal motoneuron region to the pTRG. Noticeably, the removal of GABAergic transmission within the pTRG causes the resumption of rhythmic activity during apnea induced by blockade of glutamatergic transmission. The same result is obtained by microinjections of substance P or nicotine into the pTRG during apnea. The results prompted us to present some considerations on the phylogenesis of respiratory pattern generation. They may also encourage comparative studies on the basic mechanisms underlying respiratory rhythmogenesis of vertebrates.
    Respiratory Physiology & Neurobiology 09/2014; · 1.97 Impact Factor