Article

Relationship of brain-derived neurotrophic factor and its receptor TrkB to altered inhibitory prefrontal circuitry in schizophrenia

Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
The Journal of Neuroscience : The Official Journal of the Society for Neuroscience (Impact Factor: 6.75). 02/2005; 25(2):372-83. DOI: 10.1523/JNEUROSCI.4035-04.2005
Source: PubMed

ABSTRACT Dysfunction of inhibitory neurons in the prefrontal cortex (PFC), represented by decreased expression of GABA-related genes such as the 67 kDa isoform of glutamate decarboxylase (GAD67) and parvalbumin (PV), appears to contribute to cognitive deficits in subjects with schizophrenia. We investigated the involvement of signaling mediated by brain-derived neurotrophic factor (BDNF) and its receptor tyrosine kinase TrkB in producing the altered GABA-related gene expression in schizophrenia. In 15 pairs of subjects with schizophrenia and matched control subjects, both BDNF and TrkB mRNA levels, as assessed by in situ hybridization, were significantly decreased in the PFC of the subjects with schizophrenia, whereas the levels of mRNA encoding the receptor tyrosine kinase for neurotrophin-3, TrkC, were unchanged. In this cohort, within-pair changes in TrkB mRNA levels were significantly correlated with those in both GAD67 and PV mRNA levels. Decreased BDNF, TrkB, and GAD67 mRNA levels were replicated in a second cohort of 12 subject pairs. In the combined cohorts, the correlation between within-pair changes in TrkB and GAD67 mRNA levels was significantly stronger than the correlation between the changes in BDNF and GAD67 mRNA levels. Neither BDNF nor TrkB mRNA levels were changed in the PFC of monkeys after a long-term exposure to haloperidol. Genetically introduced decreases in TrkB expression, but not in BDNF expression, also resulted in decreased GAD67 and PV mRNA levels in the PFC of adult mice; in addition, the cellular pattern of altered GAD67 mRNA expression paralleled that present in schizophrenia. Decreased TrkB signaling appears to underlie the dysfunction of inhibitory neurons in the PFC of subjects with schizophrenia.

1 Follower
 · 
78 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cognitive deficits are a core clinical feature of schizophrenia but respond poorly to available medications. Thus, understanding the neural basis of these deficits is crucial for the development of new therapeutic interventions. The types of cognitive processes affected in schizophrenia are thought to depend on the precisely timed transmission of information in cortical regions via synchronous oscillations at gamma band frequency. Here, we review 1) data from clinical studies suggesting that induction of frontal cortex gamma oscillations during tasks that engage cognitive or complex perceptual functions is attenuated in schizophrenia, 2) findings from basic neuroscience studies highlighting the features of parvalbumin-positive (PV) interneurons that are critical for gamma oscillation production and 3) results from recent post-mortem human brain studies providing additional molecular bases for PV interneuron alterations in prefrontal cortical circuitry in schizophrenia.
    Biological Psychiatry 01/2015; http://dx.doi.org/10.1016/j.biopsych.2015.03.010. · 9.47 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The maturation of inhibitory circuits during adolescence may be tied to the onset of mental health disorders such as schizophrenia. Neurotrophin signaling likely plays a critical role in supporting inhibitory circuit development and is also implicated in psychiatric disease. Within the neocortex, subcircuits may mature at different times and show differential sensitivity to neurotrophin signaling. We measured miniature inhibitory and excitatory postsynaptic currents (mIPSCs and mEPSCs) in Layer 5 cell-types in the mouse anterior cingulate (Cg) across the periadolescent period. We differentiated cell-types mainly by Thy1 YFP transgene expression and also retrobead injection labeling in the contralateral Cg and ipsilateral pons. We found that YFP- neurons and commissural projecting neurons had lower frequency of mIPSCs than neighboring YFP+ neurons or pons projecting neurons in juvenile mice (P21-25). YFP- neurons and to a lesser extent commissural projecting neurons also showed a significant increase in mIPSC amplitude during the periadolescent period (P21-25 vs. P40-50), which was not seen in YFP+ neurons or pons projecting neurons. Systemic disruption of tyrosine kinase receptor B (TrkB) signaling during P23-50 in TrkBF616A mice blocked developmental changes in mIPSC amplitude, without affecting miniature excitatory post synaptic currents (mEPSCs). Our data suggest that the maturation of inhibitory inputs onto Layer 5 pyramidal neurons is cell-type specific. These data may inform our understanding of adolescent brain development across species and aid in identifying candidate subcircuits that may show greater vulnerability in mental illness.
    Frontiers in Neural Circuits 02/2015; 9:5. DOI:10.3389/fncir.2015.00005 · 2.95 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cognitive deficits are a core clinical feature of schizophrenia but respond poorly to available medications. Thus, understanding the neural basis of these deficits is crucial for the development of new therapeutic interventions. The types of cognitive processes affected in schizophrenia are thought to depend on the precisely timed transmission of information in cortical regions via synchronous oscillations at gamma band frequency. Here, we review 1) data from clinical studies suggesting that induction of frontal cortex gamma oscillations during tasks that engage cognitive or complex perceptual functions is attenuated in schizophrenia; 2) findings from basic neuroscience studies highlighting the features of parvalbumin-positive interneurons that are critical for gamma oscillation production; and 3) results from recent postmortem human brain studies providing additional molecular bases for parvalbumin-positive interneuron alterations in prefrontal cortical circuitry in schizophrenia. Copyright © 2015 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
    Biological psychiatry 03/2015; DOI:10.1016/j.biopsych.2015.03.010 · 9.47 Impact Factor