Article

Urinary osteocalcin as a marker of bone metabolism

Institute of Biomedicine, Department of Anatomy, University of Turku, Turku, Finland.
Clinical Chemistry (Impact Factor: 7.77). 03/2005; 51(3):618-28. DOI: 10.1373/clinchem.2004.043901
Source: PubMed

ABSTRACT Osteocalcin (OC) is produced by osteoblasts during bone formation, and circulating OC has been used in clinical investigations as a marker of bone metabolism. OC is excreted into urine by glomerular filtration and can be found in urine as midmolecule fragments.
We developed and evaluated three immunoassays (U-MidOC, U-LongOC, and U-TotalOC) for the detection of various molecular forms of urine OC (U-OC). We evaluated the association of U-OC with other markers of bone turnover and with bone mass in 1044 elderly women and studied seasonal and circadian variation of U-OC.
U-OC correlated with other bone turnover markers [Spearman correlation (r), 0.30-0.57; P <0.0001], demonstrating the association between U-OC and skeletal metabolism. There was also a significant association between bone metabolism assessed by U-OC quartiles and bone mass assessed by total body bone mineral content (P <0.0001). The seasonal effects appeared to be rather small, but we observed a significant circadian rhythm similar to the one reported for serum OC with high values in the morning and low values in the afternoon.
The three immunoassays had unique specificities toward different naturally occurring U-OC fragments. U-OC concentrations measured with any of these assays correlated with bone turnover rates assessed by conventional serum markers of bone metabolism. The measurement of OC in urine samples could be used as an index of bone turnover in monitoring bone metabolism.

Download full-text

Full-text

Available from: Sanna Kakonen, Aug 23, 2015
0 Followers
 · 
147 Views
  • Source
    • "Urinary pyridinium crosslinks, Deoxypyridinoline (Dpd) and Pyridinoline (Pyd), were analyzed using HPLC analysis (ARUP Laboratories , University of Utah). Osteocalcin midfragments (U-MidOC) were detected by a previously described two-site immunoassay based on monoclonal antibodies 6F9 and 3H8 [28]. Undercarboxylated osteocalcin (unOC or Glu-OC), the metabolically active form of osteocalcin, was detected in urine samples with an EIA kit (Takara Bio Inc.). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Preterm delivery (<37 weeks post-menstrual age) is associated with suboptimal bone mass. We hypothesized that tactile/kinesthetic stimulation (TKS), a form of infant massage that incorporates kinesthetic movement, would increase bone strength and markers of bone accretion in preterm infants. Preterm, AGA infants (29-32 weeks) were randomly assigned to TKS (N=20) or Control (N=20). Twice daily TKS was provided 6 days per week for 2 weeks. Control infants received the same care without TKS treatment. Treatment was masked to parents, health care providers, and study personnel. Baseline and week two measures were collected for tibial speed of sound (tSOS, m/sec), a surrogate for bone strength, by quantitative ultrasound (Sunlight8000) and urine markers of bone metabolism, pyridinium crosslinks and osteocalcin (U-MidOC and unOC). Infant characteristics at birth and study entry as well as energy/nutrient intake were similar between TKS and Control. TKS intervention attenuated the decrease in tSOS observed in Control infants (p<0.05). Urinary pyridinium crosslinks decreased over time in both TKS and CTL (p<0.005). TKS infants experienced greater increases in urinary osteocalcin (U-MidOC, p<0.001 and unOC, p<0.05). We conclude that TKS improves bone strength in premature infants by attenuating the decrease that normally follows preterm birth. Further, biomarkers of bone metabolism suggest a modification in bone turnover in TKS infants in favor of bone accretion. Taken together, we speculate that TKS improves bone mineralization.
    Bone 07/2012; 51(4):661-6. DOI:10.1016/j.bone.2012.07.016 · 4.46 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Bone metabolism can be assessed by measuring bone turnover markers in serum or urine. Bone turnover markers are substances released from bone during bone turnover. They can be skeletal tissue proteins, collagen fragments, peptides, or enzymes released from bone cells. Bone turnover markers are extensively used in research applications but also as tools for the management of skeletal disorders in clinical practice. Osteoporosis-related applications may include assessment of response to, or deciding on osteoporosis therapy; identification of individuals with increased bone loss, and prediction of risk for fragility fractures. Advancements in the development of assays to measure bone markers has made the measurements available also for clinical practice. The possibility to use them in various aspects of clinical practice has been tested in the recent years and given promising results. Monitoring the efficacy of bone-active drugs is currently the most promising application for bone turnover markers. Some markers, particularly resorption markers may also be useful in identifying individuals who are at high risk for bone loss and future fracture. In this article we discuss some potential applications of currently available bone turnover markers in postmenopausal osteoporosis.
    Clinical Reviews in Bone and Mineral Metabolism 03/2009; 8(1):1-14. DOI:10.1007/s12018-009-9042-x
  • Source
    Clinical Chemistry 01/2006; 51(12):2362-5. DOI:10.1373/clinchem.2005.055541 · 7.77 Impact Factor
Show more