Endogenous PGE(2) regulates membrane excitability and synaptic transmission in hippocampal CA1 pyramidal neurons

Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA.
Journal of Neurophysiology (Impact Factor: 3.04). 03/2005; 93(2):929-41. DOI: 10.1152/jn.00696.2004
Source: PubMed

ABSTRACT The significance of cyclooxygenases (COXs), the rate-limiting enzymes that convert arachidonic acid (AA) to prostaglandins (PGs) in the brain, is unclear, although they have been implicated in inflammatory responses and in some neurological disorders such as epilepsy and Alzheimer's disease. Recent evidence that COX-2, which is expressed in postsynaptic dendritic spines, regulates PGE2 signaling in activity-dependent long-term synaptic plasticity at hippocampal perforant path-dentate granule cell synapses, suggests an important role of the COX-2-generated PGE2 in synaptic signaling. However, little is known of how endogenous PGE2 regulates neuronal signaling. Here we showed that endogenous PGE2 selectively regulates fundamental membrane and synaptic properties in the hippocampus. Somatic and dendritic membrane excitability was significantly reduced when endogenous PGE2 was eliminated with a selective COX-2 inhibitor in hippocampal CA1 pyramidal neurons in slices. Exogenous application of PGE2 produced significant increases in frequency of firing, excitatory postsynaptic potentials (EPSP) amplitude, and temporal summation in slices treated with the COX-2 inhibitor. The PGE2-induced increase in membrane excitability seemed to result from its inhibition of the potassium currents, which in turn, boosted dendritic Ca2+ influx during dendritic-depolarizing current injections. In addition, the PGE2-induced enhancement of EPSPs was blocked by eliminating both PKA and PKC activities. These findings indicate that endogenous PGE2 dynamically regulates membrane excitability, synaptic transmission, and plasticity and that the PGE2-induced synaptic modulation is mediated via cAMP-PKA and PKC pathways in rat hippocampal CA1 pyramidal neurons.

Download full-text


Available from: Nicolas G Bazan, Mar 10, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cyclooxygenase-2 (COX-2) is a neuronal immediate early gene that is regulated by N-methyl d aspartate (NMDA) receptor activity. COX-2 enzymatic activity catalyzes the first committed step in prostaglandin synthesis. Recent studies demonstrate an emerging role for the downstream PGE(2) EP2 receptor in diverse models of activity-dependent synaptic plasticity and a significant function in models of neurological disease including cerebral ischemia, Familial Alzheimer's disease, and Familial amyotrophic lateral sclerosis. Little is known, however, about the normal function of the EP2 receptor in behavior and cognition. Here we report that deletion of the EP2 receptor leads to significant cognitive deficits in standard tests of fear and social memory. EP2-/- mice also demonstrated impaired prepulse inhibition (PPI) and heightened anxiety, but normal startle reactivity, exploratory behavior, and spatial reference memory. This complex behavioral phenotype of EP2-/- mice was associated with a deficit in long-term depression (LTD) in hippocampus. Our findings suggest that PGE(2) signaling via the EP2 receptors plays an important role in cognitive and emotional behaviors that recapitulate some aspects of human psychopathology related to schizophrenia.
    Experimental Neurology 06/2009; 217(1):63-73. DOI:10.1016/j.expneurol.2009.01.016 · 4.62 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: It is presently unclear whether the antiseizure effects exerted by NSAIDs are totally dependent on COX inhibition or not. To clarify this point we investigated whether 7-methyl-2-phenylimidazo[1,2-b]pyridazine-3-carboxylic acid (DM1) and 6-methoxy-2-phenylimidazo[1,2-b]pyridazine-3-carboxylic acid (DM2), two imidazo[1,2-b]pyridazines structurally related to indomethacin (IDM) but ineffective in blocking COXs, retain IDM antiabsence activity. When administered by intraperitoneal injection in WAG/Rij rats, a rat strain which spontaneously develops SWDs, both DM1 and DM2 dose-dependently suppressed the occurrence of these seizures. Importantly, these compounds were both more potent in suppressing SWD occurrence than IDM. As T-type channel blockade is considered a mechanism of action common to many antiabsence drugs we explored by whole cell patch clamp electrophysiology in stably transfected HEK-293 the effect of DM1 and DM2 on Ca(V)3.1 channels, the T-type channel subtype preferentially expressed in ventrobasal thalamic nuclei. Both these compounds dose-dependently suppressed the currents elicited by membrane depolarization in these cells. A similar T-type blocking effect was also observed when the cells were exposed to IDM. In conclusion, DM1 and DM2 whilst inactive on COXs, are potent antiabsence drugs. This suggests that compounds with structural features typical of NSAIDs may exert antiepileptic activity independently from COX inhibition and possibly by a direct interaction with T-type voltage-dependent Ca(2+) channels.
    Neuropharmacology 12/2008; 56(3):637-46. DOI:10.1016/j.neuropharm.2008.11.003 · 4.82 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Our laboratory demonstrated previously that PGE2-induced modulation of hippocampal synaptic transmission is via a pre-synaptic PGE2 EP2 receptor. However, little is known about whether the EP2 receptor is involved in hippocampal long-term synaptic plasticity and cognitive function. Here we show that long-term potentiation at the hippocampal perforant path synapses was impaired in mice deficient in the EP2 (KO), while membrane excitability and passive properties in granule neurons were normal. Importantly, escape latency in the water maze in EP2 KO was longer than that in age-matched EP2 wild-type littermates (WT). We also observed that long-term potentiation was potentiated in EP2 WT animals that received lipopolysaccharide (LPS, i.p.), but not in EP2 KO. Bath application of PGE2 or butaprost, an EP2 receptor agonist, increased synaptic transmission and decreased paired-pulses ratio in EP2 WT mice, but failed to induce the changes in EP2 KO mice. Meanwhile, synaptic transmission was elevated by application of forskolin, an adenylyl cyclase activator, both in EP2 KO and WT animals. In addition, the PGE2-enhanced synaptic transmission was significantly attenuated by application of PKA, IP3 or MAPK inhibitors in EP2 WT animals. Our results show that hippocampal long-term synaptic plasticity is impaired in mice deficient in the EP2, suggesting that PGE2-EP2 signaling is important for hippocampal long-term synaptic plasticity and cognitive function.
    Journal of Neurochemistry 12/2008; 108(1):295-304. DOI:10.1111/j.1471-4159.2008.05766.x · 4.24 Impact Factor