The hepatic sinusoid in aging and cirrhosis: effects on hepatic substrate disposition and drug clearance

Centre for Education and Research on Ageing and ANZAC Research Institute, University of Sydney, Sydney, New South Wales, Australia.
Clinical Pharmacokinetics (Impact Factor: 5.05). 02/2005; 44(2):187-200.
Source: PubMed


The fenestrated sinusoidal endothelium ('liver sieve') and space of Disse in the healthy liver do not impede the transfer of most substrates, including drugs and oxygen, from the sinusoidal lumen to the hepatocyte. Plasma components transfer freely in both directions through the endothelial fenestrations and into the space of Disse. The endothelium is attenuated, there is no basement membrane and there is minimum collagen in the space of Disse, thus minimising any barriers to substrate diffusion. Both cirrhosis and aging are associated with marked structural changes in the sinusoidal endothelium and space of Disse that are likely to influence bulk plasma transfer into the space of Disse, and diffusion through the endothelium and space of Disse. These changes, termed capillarisation and pseudocapillarisation in cirrhosis and aging, respectively, impede the transfer of various substrates. Capillarisation is associated with exclusion of albumin, protein-bound drugs and macromolecules from the space of Disse, and the progressive transformation of flow-limited to barrier-limited distribution of some substrates. There is evidence that the sinusoidal changes in cirrhosis and aging contribute to hepatocyte hypoxia, thus providing a mechanism for the apparent differential reduction of oxygen-dependent phase I metabolic pathways in these conditions. Structural change and subsequent dysfunction of the liver sieve warrant consideration as a significant factor in the impairment of overall substrate handling and hepatic drug metabolism in cirrhosis and aging.

1 Follower
10 Reads
  • Source
    • "Hepatic transporters are involved in the uptake of drugs from the blood into the hepatocytes, where metabolism takes place. Transporter expression and activity may be altered in acute and chronic liver disease [Zollner et al. 2003; Le Couteur et al. 2005; Barnes et al. 2007; Li et al. 2009]. Basolateral uptake transporters like NTCP or Oatp1a4 may have reduced expression, whereas the expression of MRP3, a canalicular efflux pump, was increased in primary biliary cirrhosis [Li et al. 2009]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The liver is a complex organ with great ability to influence drug pharmacokinetics. Due to its wide array of function, its impairment has the potential to affect bioavailability, enterohepatic circulation, drug distribution, metabolism, clearance, and biliary elimination. These alterations differ widely depending on the cause of the liver failure, if it is acute or chronic in nature, the extent of impairment, and comorbid conditions. In addition, effects on liver functions do not occur in a proportional or predictable manner for escalating degrees of liver impairment. The ability of hepatic alterations to influence PK is also dependent on drug characteristics, such as administration route, chemical properties, protein binding, and extraction ratio, among others. This complexity makes it difficult to predict what these effects have on drugs. Unlike certain classes of agents, efficacy of anti-infectives is most often dependent on fulfilling pharmacokinetic/pharmacodynamic targets, such as Cmax/MIC, AUC/MIC, T>MIC, IC50/EC50, or T>EC95. Loss of efficacy, or conversely, increased risk of toxicity may occur in certain circumstances of liver injury. Although important to consider these potential alterations and their effects on specific anti-infectives, many lack data to constitute specific dosing adjustments, making it important to monitor patients for effectiveness and toxicities of therapy.
    Therapeutic Advances in Infectious Disease 02/2014; DOI:10.1177/2049936113519089
  • Source
    • "Aging and liver cirrhosis have been found to effect the transfer of drugs and metabolites from sinusoids to tissue, rather than directly effect the intrinsic metabolic process of hepatocytes [33,34]. Recognizing that the dispersive mixing terms in our models allow easy permeation across the sinusoid-tissue interface, as well as improved intracellular transport, our calculated concentration profiles “with diffusion” can be viewed as representative of healthy liver behavior, while our non-diffusive profiles can be interpreted as representing aged or cirrhotic liver behavior. "
    [Show abstract] [Hide abstract]
    ABSTRACT: We extend a physiologically-based lattice model for the transport and metabolism of drugs in the liver lobule (liver functional unit) to consider structural and spatial variability. We compare predicted drug concentration levels observed exiting the lobule with their detailed distribution inside the lobule, and indicate the role that structural variation has on these results. Liver zonation and its role on drug metabolism represent another aspect of structural inhomogeneity that we consider here. Since various liver diseases can be thought to produce such structural variations, our analysis gives insight into the role of disease on liver function and performance. These conclusions are based on the dominant role of convection in well-vascularized tissue with a given structure.
    Theoretical Biology and Medical Modelling 09/2013; 10(1):53. DOI:10.1186/1742-4682-10-53 · 0.95 Impact Factor
  • Source
    • "The diameter and number of fenestrations are altered by various liver diseases, diabetes mellitus and old age and are influenced by cytokines and hormones [1]. Alteration in the size and number of fenestrations influences the hepatic trafficking of lipoproteins [2], clearance of pharmaceutical agents [3], liver regeneration [4] and interactions between lymphocytes and hepatocytes [5]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Fenestrations are transcellular pores in endothelial cells that facilitate transfer of substrates between blood and the extravascular compartment. In order to understand the regulation and formation of fenestrations, the relationship between membrane rafts and fenestrations was investigated in liver sinusoidal endothelial cells where fenestrations are grouped into sieve plates. Three dimensional structured illumination microscopy, scanning electron microscopy, internal reflectance fluorescence microscopy and two-photon fluorescence microscopy were used to study liver sinusoidal endothelial cells isolated from mice. There was an inverse distribution between sieve plates and membrane rafts visualized by structured illumination microscopy and the fluorescent raft stain, Bodipy FL C5 ganglioside GM1. 7-ketocholesterol and/or cytochalasin D increased both fenestrations and lipid-disordered membrane, while Triton X-100 decreased both fenestrations and lipid-disordered membrane. The effects of cytochalasin D on fenestrations were abrogated by co-administration of Triton X-100, suggesting that actin disruption increases fenestrations by its effects on membrane rafts. Vascular endothelial growth factor (VEGF) depleted lipid-ordered membrane and increased fenestrations. The results are consistent with a sieve-raft interaction, where fenestrations form in non-raft lipid-disordered regions of endothelial cells once the membrane-stabilizing effects of actin cytoskeleton and membrane rafts are diminished.
    PLoS ONE 09/2012; 7(9):e46134. DOI:10.1371/journal.pone.0046134 · 3.23 Impact Factor
Show more