Article

New complex Ad vectors incorporating both rtTA and tTS deliver tightly regulated transgene expression both in vitro and in vivo.

Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29403, USA.
Gene Therapy (Impact Factor: 4.32). 04/2005; 12(6):504-11. DOI: 10.1038/sj.gt.3302437
Source: PubMed

ABSTRACT Regulation of transgene expression is a major goal of gene therapy research. Previously, we have developed a complex adenovirus (Ad) vector with tetracycline-regulated expression of a Fas ligand (FasL)-green fluorescent protein (GFP) fusion protein. This vector delivered high levels of activity that was regulated by doxycycline. However, this regulation was limited by the low but significant background activity of the TRE promoter. Recently, the Tet-regulated transcriptional silencer, tTS, was reported to suppress efficiently basal TRE activity without affecting induced expression levels. Here, we report development of Ad vectors that incorporate tTS in combination with that of reverse transactivator (rtTA) coupled with TRE promoter driving transgene expression. Incorporation of tTS improved control of transgene expression in vitro, so that an induction range of over three orders of magnitude was achieved in some cell lines. Effective regulation of transgene expression was also seen in a mouse model in vivo, following systemic vector delivery. In the case of FasL-GFP expression, significant improvement in the control of apoptotic activity both in vitro and in a mouse hepatotoxicity model was demonstrated when using rtTA-tTS vectors. In conclusion, a highly effective transgene regulation system, deliverable by a single adenoviral vector, is now available.

0 Bookmarks
 · 
45 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Stringently controlled conditional expressing systems are crucial for the functional characterization of genes. Currently, screening of multiple clones to identify the tightly controlled ones is necessary but time-consuming. Here, we describe a system fusing Tet (tetracycline)-inducible elements, BAC (bacterial artificial chromosome) and Gateway technology together to allow tight control of gene expression in BAC-transfected eukaryotic bulk cell cultures. Recombinase cloning into the shuttle vector and the BAC facilitates vector construction. An EGFP (enhanced green fluorescent protein) allows FACS (fluorescence activated cell sorting) and the BAC technology ensures tight control of gene expression that is independent of the integrating site. In the current first application, our gene of interest encodes a beta-catenin-ERalpha fusion protein. Tested by luciferase assay and western blotting, in HTB56 lung cancer cells the final BAC E11-IGR-beta-catenin-ERalpha vector demonstrated sensitive inducibility by Tet or Dox (doxycycline) in a dose-dependent manner with low background, and the EGFP was an effective selection marker by FACS in bulk culture HTB56 and myeloblastic 32D cells. This is a highly efficient tool for the rapid generation of stringently controlled Tet-inducible systems in cell lines.
    PLoS ONE 02/2009; 4(7):e6445. · 3.73 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cartilage tissue engineering using controllable transcriptional therapy together with synthetic biopolymer scaffolds shows higher potential for overcoming chondrocyte degradation and constructing artificial cartilages both in vivo and in vitro. Here, the potential regulating tetracycline expression (Tet-on) system was used to express Sox9 both in vivo and in vitro. Chondrocyte degradation was measured in vitro and overcome by Soxf9 expression. Experiments confirmed the feasibility of the combined use of Sox9 and Tet-on system in cartilage tissue engineering. Engineered poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) scaffolds were seeded with recombinant chondrocytes which were transfected with Tet-induced Sox9 expression; the scaffolds were implanted under the skin of 8-week-old rats. The experimental group was injected with Dox in the abdomen, while the control group was injected with normal saline. After 4 or 8 days of implantation in vivo, the newly formed pieces of articular chondrocytes were taken out and measured. Dox injection in vivo showed positive effect on recombinant chondrocytes, in which Sox9 expression was up-regulated by an inducible system with specific matrix proteins. The results demonstrate this controllable transcriptional therapy is a potential approach for tissue engineering.
    Biomaterials 12/2013; · 8.31 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Numerous preclinical studies have demonstrated the efficacy of viral gene delivery vectors, and recent clinical trials have shown promising results. However, the tight control of transgene expression is likely to be required for therapeutic applications and in some instances, for safety reasons. For this purpose, several ligand-dependent transcription regulatory systems have been developed. Among these, the tetracycline-regulatable system is by far the most frequently used and the most advanced towards gene therapy trials. This review will focus on this system and will describe the most recent progress in the regulation of transgene expression in various organs, including the muscle, the retina and the brain. Since the development of an immune response to the transactivator was observed following gene transfer in the muscle of nonhuman primate, focus will be therefore, given on the immune response to transgene products of the tetracycline inducible promoter.
    Advanced drug delivery reviews 05/2009; 61(7-8):527-41. · 11.96 Impact Factor

Full-text

View
0 Downloads
Available from