Article

Functional genomic analysis of the AUXIN RESPONSE FACTOR gene family members in Arabidopsis thaliana: unique and overlapping functions of ARF7 and ARF19.

Plant Gene Expression Center, Albany, California 94710, USA.
The Plant Cell (Impact Factor: 9.58). 03/2005; 17(2):444-63. DOI: 10.1105/tpc.104.028316
Source: PubMed

ABSTRACT The AUXIN RESPONSE FACTOR (ARF) gene family products, together with the AUXIN/INDOLE-3-ACETIC ACID proteins, regulate auxin-mediated transcriptional activation/repression. The biological function(s) of most ARFs is poorly understood. Here, we report the identification and characterization of T-DNA insertion lines for 18 of the 23 ARF gene family members in Arabidopsis thaliana. Most of the lines fail to show an obvious growth phenotype except of the previously identified arf2/hss, arf3/ett, arf5/mp, and arf7/nph4 mutants, suggesting that there are functional redundancies among the ARF proteins. Subsequently, we generated double mutants. arf7 arf19 has a strong auxin-related phenotype not observed in the arf7 and arf19 single mutants, including severely impaired lateral root formation and abnormal gravitropism in both hypocotyl and root. Global gene expression analysis revealed that auxin-induced gene expression is severely impaired in the arf7 single and arf7 arf19 double mutants. For example, the expression of several genes, such as those encoding members of LATERAL ORGAN BOUNDARIES domain proteins and AUXIN-REGULATED GENE INVOLVED IN ORGAN SIZE, are disrupted in the double mutant. The data suggest that the ARF7 and ARF19 proteins play essential roles in auxin-mediated plant development by regulating both unique and partially overlapping sets of target genes. These observations provide molecular insight into the unique and overlapping functions of ARF gene family members in Arabidopsis.

0 Bookmarks
 · 
111 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Abstract The genetic architecture of plant height was investigated in a set of 358 recent European winter wheat varieties plus 14 spring wheat varieties based on field data in eight environments. Genotyping of diagnostic markers revealed the Rht-D1b mutant allele in 58% of the investigated varieties, while the Rht-B1b mutant was only present in 7% of the varieties. Rht-D1 was significantly associated with plant height by using a mixed linear model and employing a kinship matrix to correct for population stratification. Further genotyping data included 732 microsatellite markers, resulting in 770 loci, of which 635 markers were placed on the ITMI map plus a set of 7769 mapped SNP markers genotyped with the 90 k iSELECT chip. When Bonferroni correction was applied, a total of 153 significant marker-trait associations (MTAs) were observed for plant height and the SSR markers (2log10 (P-value) $4.82) and 280 (2log10 (P-value) $5.89) for the SNPs. Linear regression between the most effective markers and the BLUEs for plant height indicated additive effects for the MTAs of different chromosomal regions. Analysis of syntenic regions in the rice genome revealed closely linked rice genes related to gibberellin acid (GA) metabolism and perception, i.e. GA20 and GA2 oxidases orthologous to wheat chromosomes 1A, 2A, 3A, 3B, 5B, 5D and 7B, ent-kaurenoic acid oxidase orthologous to wheat chromosome 7A, ent-kaurene synthase on wheat chromosome 2B, as well as GA-receptors like DELLA genes orthologous to wheat chromosomes 4B, 4D and 7A and genes of the GID family orthologous to chromosomes 2B and 5B. The data indicated that besides the widely used GA-insensitive dwarfing genes Rht-B1 and Rht-D1 there is a wide spectrum of loci available that could be used for modulating plant height in variety development.
    PLoS ONE 12/2014; · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Auxin responsive elements (AuxRE) were found in upstream regions of target genes for ARFs (Auxin response factors). While Chip-seq data for most of ARFs are still unavailable, prediction of potential AuxRE is restricted by consensus models that detect too many false positive sites. Using sequence analysis of experimentally proven AuxREs, we revealed both an extended nucleotide context pattern for AuxRE itself and three distinct types of its coupling motifs (Y-patch, AuxRE-like, and ABRE-like), which together with AuxRE may form the composite elements. Computational analysis of the genome-wide distribution of the predicted AuxREs and their impact on auxin responsive gene expression allowed us to conclude that: (1) AuxREs are enriched around the transcription start site with the maximum density in 5'UTR; (2) AuxREs mediate auxin responsive up-regulation, not down-regulation. (3) Directly oriented single AuxREs and reverse multiple AuxREs are mostly associated with auxin responsiveness. In the composite AuxRE elements associated with auxin response, ABRE-like and Y-patch are 5'-flanking or overlapping AuxRE, whereas AuxRE-like motif is 3'-flanking. The specificity in location and orientation of the coupling elements suggests them as potential binding sites for ARFs partners.
    BMC Genomics 12/2014; 15(Suppl 12):S4. · 4.04 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Emergence of new lateral roots from within the primary root in Arabidopsis has been shown to be regulated by the phytohormone auxin, via the expression of the auxin influx carrier LAX3, mediated by the ARF7/19 IAA14 signalling module (Swarup et al., 2008). A single cell model of the LAX3 and IAA14 auxin response was formulated and used to demonstrate that hysteresis and bistability may explain the experimentally observed 'all-or-nothing' LAX3 spatial expression pattern in cortical cells containing a gradient of auxin concentrations. The model was tested further by using a parameter fitting algorithm to match model output with qRT-PCR mRNA expression data following exogenous auxin treatment. It was found that the model is able to show good agreement with the data, but only when the exogenous auxin signal is degraded over time, at a rate higher than that measured in the experimental medium, suggesting the triggering of an endogenous auxin homeostasis mechanism. Testing the model over a more physiologically relevant range of extracellular auxin shows bistability and hysteresis still occur when using the optimised parameters, providing the rate of LAX3 active auxin transport is sufficiently high relative to passive diffusion. Copyright © 2014. Published by Elsevier Ltd.
    Journal of Theoretical Biology 11/2014; · 2.35 Impact Factor

Full-text (2 Sources)

Download
42 Downloads
Available from
May 28, 2014