High specificity generally characterizes mycorrhizal association in rare lady's slipper orchids, genus Cypripedium.

Department of Integrative Biology, University of California, 3060 Valley Life Sciences Building, #3140, Berkeley, California 94720, USA.
Molecular Ecology (Impact Factor: 6.28). 03/2005; 14(2):613-26. DOI: 10.1111/j.1365-294X.2005.02424.x
Source: PubMed

ABSTRACT Lady's slipper orchids (Cypripedium spp.) are rare terrestrial plants that grow throughout the temperate Northern Hemisphere. Like all orchids, they require mycorrhizal fungi for germination and seedling nutrition. The nutritional relationships of adult Cypripedium mycorrhizae are unclear; however, Cypripedium distribution may be limited by mycorrhizal specificity, whether this specificity occurs only during the seedling stage or carries on into adulthood. We attempted to identify the primary mycorrhizal symbionts for 100 Cypripedium plants, and successfully did so with two Cypripedium calceolus, 10 Cypripedium californicum, six Cypripedium candidum, 16 Cypripedium fasciculatum, two Cypripedium guttatum, 12 Cypripedium montanum, and 11 Cypripedium parviflorum plants from a total of 44 populations in Europe and North America, yielding fungal nuclear large subunit and mitochondrial large subunit sequence and RFLP (restriction fragment length polymorphism) data for 59 plants. Because orchid mycorrhizal fungi are typically observed without fruiting structures, we assessed fungal identity through direct PCR (polymerase chain reaction) amplification of fungal genes from mycorrhizally colonized root tissue. Phylogenetic analysis revealed that the great majority of Cypripedium mycorrhizal fungi are members of narrow clades within the fungal family Tulasnellaceae. Rarely occurring root endophytes include members of the Sebacinaceae, Ceratobasidiaceae, and the ascomycetous genus, Phialophora. C. californicum was the only orchid species with apparently low specificity, as it associated with tulasnelloid, ceratobasidioid, and sebacinoid fungi in roughly equal proportion. Our results add support to the growing literature showing that high specificity is not limited to nonphotosynthetic plants, but also occurs in photosynthetic ones.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Knowledge about the population genetic variation of the endangered orchid, Cypripedium japonicum, is conducive to the development of conservation strategies. Here, we examined the levels and partitioning of inter-simple sequence repeat (ISSR) diversity (109 loci) in five populations of this orchid to gain insight into its genetic variation and population structure in Eastern and Central China. It harbored considerably lower levels of genetic diversity both at the population (percentage of polymorphic loci (PPL) = 11.19%, Nei's gene diversity (H) = 0.0416 and Shannon's information index (I) = 0.0613) and species level (PPL = 38.53%, H = 0.1273 and I = 0.1928) and a significantly higher degree of differentiation among populations (the proportion of the total variance among populations (Φpt) = 0.698) than those typical of ISSR-based studies in other orchid species. Furthermore, the Nei's genetic distances between populations were independent of the corresponding geographical distances. Two main clusters are shown in an arithmetic average (UPGMA) dendrogram, which is in agreement with the results of principal coordinate analysis (PCoA) analysis and the STRUCTURE program. In addition, individuals within a population were more similar to each other than to those in other populations. Based on the genetic data and our field survey, the development of conservation management for this threatened orchid should include habitat protection, artificial gene flow and ex situ measures.
    International Journal of Molecular Sciences 01/2014; 15(7):11578-11596. · 2.46 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Dendrobium is a large genus in the family Orchidaceae that exhibits vast diversity in floral characteristics, which is of considerable importance to orchid breeders, biotechnologists and collectors. Native species have high value as a result of their medicinal properties, while their hybrids are important as ornamental commodities, either as cut flowers or potted plants and are thus veritable industrial crops. Thus, preservation of Dendrobium germplasm is valuable for species conservation, breeding programs and the floriculture industry. Cryopreservation represents the only safe, efficient and cost-effective long-term storage option to facilitate the conservation of genetic resources of plant species. This review highlights 16 years of literature related to the preservation of Dendrobium germplasm and comprises the most comprehensive assessment of thorough studies performed to date, which shows reliable and reproducible results. Air-drying, encapsulation-dehydration, encapsulation-vitrification, vitrification and droplet-vitrification are the current cryopreservation methodologies that have been used to cryopreserve Dendrobium germplasm. Mature seeds, pollen, protoplasts, shoot primordia, protocorms and somatic embryos or protocorm-like bodies (PLBs) have been cryopreserved with different levels of success. Encapsulation-vitrification and encapsulation-dehydration are the most used protocol, while PLBs represent the main explant explored.
    Plant Cell Reports 05/2014; · 2.94 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The variation in nitrogen use strategies and photosynthetic pathways among vascular epiphyte families was addressed in a white-sand vegetation in the Brazilian Central Amazon. Foliar nitrogen and carbon concentrations and their isotopic composition (δ15N and δ13C, respectively) were measured in epiphytes (Araceae, Bromeliaceae and Orchidaceae) and their host trees. The host tree Aldina heterophylla had higher foliar N concentration and lower C:N ratio (2.1 ± 0.06% and 23.6 ± 0.8) than its dwellers. Tree foliar δ15N differed only from that of the orchids. Comparing the epiphyte families, the aroids had the highest foliar N concentration and lowest C:N ratios (1.4 ± 0.1% and 34.9 ± 4.2, respectively). The orchids had more negative foliar δ15N values (-3.5 ± 0.2‰) than the aroids (-1.9 ± 0.7‰) and the bromeliads (-1.1 ± 0.6‰). Within each family, aroid and orchid taxa differed in relation to foliar N concentrations and C:N ratios, whereas no internal variation was detected within bromeliads. The differences in foliar δ15N observed herein seem to be related to the differential reliance on the available N sources for epiphytes, as well as to the microhabitat quality within the canopy. In relation to epiphyte foliar δ13C, the majority of epiphytes use the water-conserving CAM-pathway (δ13C values around -17‰), commonly associated with plants that live under limited and intermittent water supply. Only the aroids and one orchid taxon indicated the use of C3-pathway (δ13C values around -30‰).
    Revista Brasileira de Botânica 03/2011; 34(1):21-30.

Full-text (2 Sources)

Available from
May 29, 2014