Coactivator proteins as determinants of estrogen receptor structure and function: Spectroscopic evidence for a novel coactivator-stabilized receptor conformation

Department of Chemistry, University of Illinois, 600 South Mathews Avenue, Urbana, Illinois 61801, USA.
Molecular Endocrinology (Impact Factor: 4.2). 07/2005; 19(6):1516-28. DOI: 10.1210/me.2004-0458
Source: PubMed

ABSTRACT The direct regulation of gene transcription by nuclear receptors, such as the estrogen receptor (ER), involves not just ligand and DNA binding but the recruitment of coregulators. Typically, recruitment of p160 coactivator proteins to agonist-liganded ER is considered to be unidirectional, with ligand binding stabilizing an ER ligand binding domain (LBD) conformation that favors coactivator interaction. Using fluorophore-labeled ERalpha-LBDs, we present evidence for a pronounced stabilization of ER conformation that results from coactivator binding, manifest by decreased ER sensitivity to proteases and reduced conformational dynamics, as well as for the formation of a novel coactivator-stabilized (costabilized) receptor conformation, that can be conveniently monitored by the generation of an excimer emission from pyrene-labeled ERalpha-LBDs. This costabilized conformation may embody features required to support ER transcriptional activity. Different classes of coactivator proteins combine with estrogen agonists of different structure to elicit varying degrees of this receptor stabilization, and antagonists and coactivator binding inhibitors disfavor the costabilized conformation. Remarkably, high concentrations of coactivators engender this conformation even in apo- and antagonist-bound ERs (more so with selective ER modulators than with pure antagonists), providing an in vitro model for the development of resistance to hormone therapy in breast cancer.

Download full-text


Available from: John A Katzenellenbogen, Mar 06, 2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Estrogen receptor alpha (ERalpha) belongs to the superfamily of nuclear receptors and as such acts as a ligand-modulated transcription factor. Ligands elicit in ERalpha conformational changes leading to the recruitment of coactivators required for the transactivation of target genes via cognate response elements. In many cells, activated ERalpha also undergoes downregulation by proteolysis mediated by the ubiquitin/proteasome system. Although these various molecular processes have been well characterized, little is known as to which extent they are interrelated. In the present study, we used a panel of type I (estradiol derivatives and "linear", non-steroidal ligands) and type II ("angular" ligands) estrogens, in order to identify possible relationships between ligand binding affinity, recruitment of LxxLL-containing coactivators, ERalpha downregulation in MCF-7 cells and related transactivation activity of ligand-bound ERalpha. For type I estrogens, there was a clear-cut relationship between ligand binding affinity, hydrophobicity around C-11 of estradiol and ability of ERalpha to associate with LxxLL motifs, both in cell-free condition and in vivo (MCF-7 cells). Moreover, LxxLL motif recruitment by ERalpha seemed to be a prerequisite for the downregulation of the receptor. By contrast, type II ligands, as well as estradiol derivatives bearing a bulky side chain at 11beta, had much less tendency to promote ERalpha-LxxLL interaction or even behaved as antagonists in this respect, in agreement with the well known partial estrogenicity/antiestrogenicity of some of these compounds. Interestingly, some type II ligands which antagonized LxxLL motif recruitment were nonetheless able to enhance ERalpha-mediated gene transactivation.
    Biochemical pharmacology 10/2009; 79(5):746-57. DOI:10.1016/j.bcp.2009.10.015 · 4.65 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Human nerve growth factor-induced B (NGFI-B) is a member of the NR4A subfamily of orphan nuclear receptors (NRs). Lacking identified ligands, orphan NRs show particular co-regulator proteins binding properties, different from other NRs, and they might have a non-classical quaternary organization. A body of evidence suggests that NRs recognition of and binding to ligands, DNA, homo- and heterodimerization partners and co-regulator proteins involve significant conformational changes of the NR ligand-binding domains (LBDs). To shed light on largely unknown biophysical properties of NGFI-B, here we studied structural organization and unfolding properties of NGFI-B ligand (like)-binding domain induced by chemical perturbation. Our results show that NGFI-B LBD undergoes a two-state guanidine hydrochloride (GndHCl) induced denaturation, as judged by changes in the alpha-helical content of the protein monitored by circular dichroism spectroscopy (CD). In contrast, changes in the tertiary structure of NGFI-B LBD, reported by intrinsic fluorescence, reveal a clear intermediate state. Additionally, SAXS results demonstrate that the intermediate observed by intrinsic fluorescence is a partially folded homodimeric structure, which further unfolds without dissociation at higher GndHCl concentrations. This partially unfolded dimeric assembly of NGFI-B LBD might resemble an intermediate that this domain access momentarily in the native state upon interactions with functional partners.
    Biophysical Chemistry 08/2008; 137(2-3):81-7. DOI:10.1016/j.bpc.2008.07.005 · 2.32 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The Estrogen Receptor (ER) is a ligand activated transcription factor involved in numerous fundamental biological processes as in many important diseases and malfunctions. Since 1998, when the first structure of the ER ligand binding domain complexed with 17 beta-estradiol (E2) was released, the number of ER alpha and ER beta crystallographic structures constantly increased. Nevertheless, little is still known about several fundamental events that govern the regular biological activity, or that modulate the transcription response following the interaction of the receptor with xenobiotic compounds. Moreover, the peculiar flexibility of the receptor characterized by two levels of conformational changes, i.e slight adjustments of binding pocket residues side chains, and more significant displacement of helix 12, moving from a close/agonist-like to an open/antagonist-like position, makes experimental approaches unable to properly describe and predict the receptor conformational equilibrium. Which is the most probable structure of the unbound receptor? How do biological ligands enter the receptor? How does the tissue-related pull of coactivators and corepressors affect the puzzling conformational equilibrium of the receptor? Since most of these questions still do not have an answer. A proper description of the structure-activity relationship and of the pharmacophoric properties of the binding pocket would be of paramount importance in order to design new agonist and antagonist molecules, and to understand how diverse xenobiotic compounds can alter the conformational equilibrium of the receptor, inducing estrogenic or anti-estrogenic effects. In this review we report the most relevant computational approaches, both theoretical and applicative, and the latest proposed models.
    Current Medicinal Chemistry 02/2009; 16(23):2987-3027. DOI:10.2174/092986709788803123 · 3.72 Impact Factor