Insight into the functional consequences of hMYH variants associated with colorectal cancer: distinct differences in the adenine glycosylase activity and the response to AP endonucleases of Y150C and G365D murine MYH.

Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, UT 84112, USA.
DNA Repair (Impact Factor: 3.36). 04/2005; 4(3):315-25. DOI: 10.1016/j.dnarep.2004.10.003
Source: PubMed

ABSTRACT Escherichia coli MutY and its eukaryotic homologues play an important role in preventing mutations by removing adenine from 7,8-dihydro-8-oxo-2'-deoxyguanosine (OG):A mismatches. It has recently been demonstrated that inherited biallelic mutations in the genes encoding the human homologue of MutY (hMYH) are correlated with a genetic predisposition for multiple colorectal adenomas and carcinomas. The two most common hMYH variants found in patients with colorectal cancer are Y165C and G382D. In this study, we examined the equivalent variants in the murine MutY homologue (mMYH), Y150C and G365D. The Y150C mMYH enzyme showed a large decrease in the rate of adenine removal from both OG:A- and G:A-containing substrates, while G365D mMYH showed a decrease in the ability to catalyze adenine removal only with a G:A-containing substrate. Both mMYH variants exhibit a significantly decreased affinity for duplexes containing noncleavable 2'-deoxyadenosine analogues. In addition, the human apurinic/apyrimidinic endonuclease (Ape1) stimulated product formation by wild-type and G365D mMYH with an OG:A substrate under conditions of multiple-turnover ([E]<[S]). In contrast, the presence of Ape1 nearly completely inhibited adenine removal by Y150C mMYH from the OG:A mismatch substrate. The more deleterious effect of Ape1 on the glycosylase activity of Y150C relative to G365D mMYH correlated with the more compromised binding affinity of Y150C to substrate analogue duplexes. These results suggest that the equivalent hMYH variants may be significantly compromised in substrate targeting in vivo due to a decrease in binding to substrate DNA; moreover, competition with other DNA binding proteins may further reduce the effective adenine glycosylase activity in vivo.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Conspectus Our cellular genome is continuously exposed to a wide spectrum of exogenous and endogenous DNA damaging agents. These agents can lead to formation of an extensive array of DNA lesions including single- and double-stranded breaks, inter- and intrastrand cross-links, abasic sites, and modification of DNA nucleobases. Persistence of these DNA lesions can be both mutagenic and cytotoxic, and can cause altered gene expression and cellular apoptosis leading to aging, cancer, and various neurological disorders. To combat the deleterious effects of DNA lesions, cells have a variety of DNA repair pathways responsible for restoring damaged DNA to its canonical form. Here we examine one of those repair pathways, the base excision repair (BER) pathway, a highly regulated network of enzymes responsible for repair of modified nucleobase and abasic site lesions. The enzymes required to reconstitute BER in vitro have been identified, and the repair event can be considered to occur in two parts: (1) excision of the modified nucleobase by a DNA glycosylase, and (2) filling the resulting "hole" with an undamaged nucleobase by a series of downstream enzymes. DNA glycosylases, which initiate a BER event, recognize and remove specific modified nucleobases and yield an abasic site as the product. The abasic site, a highly reactive BER intermediate, is further processed by AP endonuclease 1 (APE1), which cleaves the DNA backbone 5' to the abasic site, generating a nick in the DNA backbone. After action of APE1, BER can follow one of two subpathways, the short-patch (SP) or long-patch (LP) version, which differ based on the number of nucleotides a polymerase incorporates at the nick site. DNA ligase is responsible for sealing the nick in the backbone and regenerating undamaged duplex. Not surprisingly, and consistent with the idea that BER maintains genetic stability, deficiency and/or inactivity of BER enzymes can be detrimental and result in cancer. Intriguingly, this DNA repair pathway has also been implicated in causing genetic instability by contributing to the trinucleotide repeat expansion associated with several neurological disorders. Within this Account, we outline the chemistry of the human BER pathway with a mechanistic focus on the DNA glycosylases that initiate the repair event. Furthermore, we describe kinetic studies of many BER enzymes as a means to understand the complex coordination that occurs during this highly regulated event. Finally, we examine the pitfalls associated with deficiency in BER activity, as well as instances when BER goes awry.
    Accounts of Chemical Research 03/2014; 47(4). DOI:10.1021/ar400275a · 24.35 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Oxidative DNA damage is repaired primarily by the base excision repair (BER) pathway in a process initiated by removal of base lesions or mismatched bases by DNA glycosylases. MutY homolog (MYH, MUTYH, or Myh1) is a DNA glycosylase which excises adenine paired with the oxidative lesion 8-oxo-7,8-dihydroguanine (8-oxoG, or G°), thus reducing G:C to T:A mutations. The resulting apurinic/apyrimidinic (AP) site is processed by an AP-endonuclease or a bifunctional glycosylase/lyase. We show here that the major Schizosaccharomyces pombe AP endonuclease, Apn2, binds to the inter-domain connector located between the N- and C-terminal domains of Myh1. This Myh1 inter-domain connector also interacts with the Hus1 subunit of the Rad9-Rad1-Hus1 checkpoint clamp. Mutagenesis studies indicate that Apn2 and Hus1 bind overlapping but different sequence motifs on Myh1. Mutation on I(261) of Myh1 reduces its interaction with Hus1, but only slightly attenuates its interaction with Apn2. However, E(262) of Myh1 is a key determinant for both Apn2 and Hus1 interactions. Like human APE1, Apn2 has 3'-phosphodiesterase activity. However, unlike hAPE1, Apn2 has a weak AP endonuclease activity which cleaves the AP sites generated by Myh1 glycosylase. Functionally, Apn2 stimulates Myh1 glycosylase activity and Apn2 phosphodiesterase activity is stimulated by Myh1. The cross stimulation of Myh1 and Apn2 enzymatic activities is dependent on their physical interaction. Thus, Myh1 and Apn2 constitute an initial BER complex.
    DNA repair 03/2014; 15:1-10. DOI:10.1016/j.dnarep.2014.01.001 · 3.36 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Exposure to ionizing radiation can produce multiple, clustered oxidative lesions in DNA. The near simultaneous excision of nearby lesions in opposing DNA strands by the Base Excision Repair (BER) enzymes can produce double-strand DNA breaks (DSBs). This attempted BER accounts for many of the potentially lethal or mutagenic DSBs that occur in vivo. To assess the impact of nucleosomes on the frequency and pattern of BER-dependent DSB formation, we incubated nucleosomes containing oxidative damages in opposing DNA strands with selected DNA glycosylases and human apurinic/apyrimidinic endonuclease 1. Overall, nucleosomes substantially suppressed DSB formation. However, the degree of suppression varied as a function of [i] the lesion type and DNA glycosylase tested; [ii] local sequence context and the stagger between opposing strand lesions; [iii] the helical orientation of oxidative lesions relative to the underlying histone octamer; and [iv] the distance between the lesion cluster and the nucleosome edge. In some instances, the binding of a BER factor to one nucleosomal lesion appeared to facilitate binding to the opposing strand lesion. DSB formation did not invariably lead to nucleosome dissolution and, in some cases, free DNA ends resulting from DSB formation remained associated with the histone octamer. These observations explain how specific structural and dynamic properties of nucleosomes contribute to the suppression of BER-generated DSBs. These studies also suggest that most BER-generated DSBs will occur in linker DNA and in genomic regions associated with elevated rates of nucleosome turnover or remodeling.
    Journal of Biological Chemistry 06/2014; 289(29). DOI:10.1074/jbc.M114.571588 · 4.60 Impact Factor