Tumor-stroma interactions.

Departments of Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
Current Opinion in Genetics & Development (Impact Factor: 8.57). 03/2005; 15(1):97-101. DOI: 10.1016/j.gde.2004.12.003
Source: PubMed

ABSTRACT The importance of stromal cells and the factors that they express during cancer initiation and progression has been highlighted by recent literature. The cellular components of the stroma of epithelial tissues are well-recognized as having a supportive role in carcinogenesis, where the initiating mutations of a tumor originate in the epithelial cells. The use of mouse models and xenografts suggests that mutations in the stromal fibroblasts can also initiate epithelial tumors. Many of these tumors result from the alteration of paracrine growth factor pathways that act on the epithelia. However, the tissue specificity of the responses to the growth factors is a mystery not yet solved.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Mathematical models describing the movement of multiple interacting subpopulations are relevant to many biological and ecological processes. Standard mean-field partial differential equation descriptions of these processes suffer from the limitation that they implicitly neglect to incorporate the impact of spatial correlations and clustering. To overcome this, we derive a moment dynamics description of a discrete stochastic process which describes the spreading of distinct interacting subpopulations. In particular, we motivate our model by mimicking the geometry of two typical cell biology experiments. Comparing the performance of the moment dynamics model with a traditional mean-field model confirms that the moment dynamics approach always outperforms the traditional mean-field approach. To provide more general insight we summarise the performance of the moment dynamics model and the traditional mean-field model over a wide range of parameter regimes. These results help distinguish between those situations where spatial correlation effects are sufficiently strong, such that a moment dynamics model is required, from other situations where spatial correlation effects are sufficiently weak, such that a traditional mean-field model is adequate.
    Journal of Theoretical Biology 01/2015; 82. DOI:10.1016/j.jtbi.2015.01.025 · 2.30 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Huachansu injection (HCS) is a water-soluble preparation made from Bufo gargarizans's skin, which has been widely used in clinics for tumor therapy in China. Though the anti-cancer activity of HCS has been verified through studies in vitro and in vivo, there is little research about its potential anti-metastasis effect. The primary objective of this study was to assess the effects of HCS on both the invasion of pancreatic cancer cells in vitro and on the progression of liver metastasis in vivo in this study. HCS anti-metastasis potential was accessed using both assay of Cell viability and invasion in vitro, and then further Establishing xenograft model in nude mice. In the cell-based assay, mRNA and protein expression of MMP-2, MMP-9 and VEGF was detected by semi-quantitative RT-PCR and western blotting. In animal experiment, liver metastasis nodules and change of liver-body ratio was observed. Meanwhile, correlation of the CA19-9 and CEA content in serum with the progression of liver metastasis was analyzed.Result: We observed that HCS prevented the invasion of cancer cells, with inhibiting the expressions of MMP-2 and MMP-9, and reduced not only the number of metastasis nodules but the ratio of liver-body weight as well. Furthermore, HCS decreased the expression of MMP-2, MMP-9 and VEGF in liver metastasis, while also reducing CA19-9 contents in serum. In addition, correlation analysis indicated that the level of CA19-9 in serum was closely related to the number of liver metastasis nodules. Our experimental results suggest that HCS has some anti-metastasis potential to suppress the growth of liver metastasis by decreasing the expression of MMP-2 and MMP-9 as well as VEGF.
    BMC Complementary and Alternative Medicine 12/2014; 14(1):483. DOI:10.1186/1472-6882-14-483 · 1.88 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Most investigations of cancer-stroma interactions have focused on biochemical signaling effects, with much less attention being paid to biophysical factors. In this study, we investigated the role of mechanical stimuli on human prostatic fibroblasts using a microfluidic platform that was adapted for our experiments and further developed for both repeatable performance among multiple assays and for compatibility with high-resolution confocal microscopy. Results show that mechanical stretching of normal tissue-associated fibroblasts (NAFs) alters the structure of secreted fibronectin. Specifically, unstretched NAFs deposit and assemble fibronectin in a random, mesh-like arrangement, while stretched NAFs produce matrix with a more organized, linearly aligned structure. Moreover, the stretched NAFs exhibited an enhanced capability for directing co-cultured cancer cell migration in a persistent manner. Furthermore, we show that stretching NAFs triggers complex biochemical signaling events through the observation of increased expression of platelet derived growth factor receptor α (PDGFRα). A comparison of these behaviors with those of cancer-associated fibroblasts (CAFs) indicates that the observed phenotypes of stretched NAFs are similar to those associated with CAFs, suggesting that mechanical stress is a critical factor in NAF activation and CAF genesis.
    Scientific Reports 02/2015; 5:8334. DOI:10.1038/srep08334 · 5.08 Impact Factor


Available from