An RNAi strategy for treatment of amyotrophic lateral sclerosis caused by mutant Cu,Zn superoxide dismutase.

Department of Biochemistry and Molecular Pharmacology, University of Massachusetts, Worcester, Massachusetts 01605, USA.
Journal of Neurochemistry (Impact Factor: 4.24). 02/2005; 92(2):362-7. DOI: 10.1111/j.1471-4159.2004.02860.x
Source: PubMed

ABSTRACT Amyotrophic lateral sclerosis (ALS or Lou Gehrig's disease) is a neurodegenerative disease characterized by motor neuron degeneration, paralysis and death. One cause of this disease is mutations in the Cu,Zn superoxide dismutase (SOD1) gene. As mutant SOD1 acquires a toxic property that kills motor neurons, by reducing the mutant protein the disease progression may be slowed or prevented. While mutant SOD1 is toxic, the wild-type SOD1 is indispensable for motor neuron health. Therefore, the ideal therapeutic strategy would be to inhibit selectively the mutant protein expression. Previously we have demonstrated that RNA interference (RNAi) can selectively inhibit some mutant SOD1 expression. However, more than 100 SOD1 mutants can cause ALS and all mutants cannot be inhibited selectively by RNAi. To overcome this obstacle, we have designed a replacement RNAi strategy. Using this strategy, all mutants and wild-type genes are inhibited by RNAi. The wild-type SOD1 function is then replaced by designed wild-type SOD1 genes that are resistant to the RNAi. Here we demonstrate the concept of this strategy.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mutations in the gene encoding human SOD1 (hSOD1) can cause amyotrophic lateral sclerosis (ALS) yet the mechanism by which mutant SOD1 can induce ALS is not fully understood. There is currently no cure for ALS or treatment that significantly reduces symptoms or progression. To develop tools to understand the protein conformations present in mutant SOD1-induced ALS and as possible immunotherapy, we isolated and characterized eleven unique human monoclonal antibodies specific for hSOD1. Among these, five recognized distinct linear epitopes on hSOD1 that were not available in the properly-folded protein but were available on forms of protein with some degree of misfolding. The other six antibodies recognized conformation-dependent epitopes that were present in the properly-folded protein with two different recognition profiles: three could bind hSOD1 dimer or monomer and the other three were specific for hSOD1 dimer only. Antibodies with the capacity to bind hSOD1 monomer were able to prevent increased hydrophobicity when mutant hSOD1 was exposed to increased temperature and EDTA, suggesting that the antibodies stabilized the native structure of hSOD1. Two antibodies were tested in a G93A mutant hSOD1 transgenic mouse model of ALS but did not yield a statistically significant increase in overall survival. It may be that the two antibodies selected for testing in the mouse model were not effective for therapy or that the model and/or route of administration were not optimal to produce a therapeutic effect. Therefore, additional testing will be required to determine therapeutic potential for SOD1 mutant ALS and potentially some subset of sporadic ALS.
    PLoS ONE 04/2013; 8(4):e61210. DOI:10.1371/journal.pone.0061210 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Neurons are large post-mitotic cells with a high metabolic activity and a highly complex morphology characterized by a dendritic tree that consists of a network of processes, and an axon that can have length of up to 104 times the diameter of the cell body. Because of this complexity the maintenance of the functional and structural integrity of neurons throughout life is a complex task that requires sophisticated transport, damage control and repair machineries. Hence, it is not surprising that aging is associated with structural and functional deterioration of the central nervous system and that neurodegenerative diseases (diseases that cause the premature loss of neurons) are among the dominant disorders associated with aging. The knowledge on processes involved in normal aging and neuronal death in neurodegerative diseases is increasing, but far from complete. Intervention in these processes is therefore not yet possible. Amyotrophic lateral sclerosis (ALS) is a fatal disease in which motoneurons in the spinal cord, brain stem and motor cortex degenerate. This disease has an incidence of 2-3 per 100.000 people, meaning that 300-450 people are diagnosed with the disease each year. The survival of ALS-patients is on average 3 years after diagnosis. The first symptoms are usually fatigue, muscle cramps, and weakness in the muscles of one of the limbs, progressing to paralysis and spreading to other parts of the body, eventually causing total body paralysis. In most patients (about 90%) no apparent genetic cause for their disease has been found, in those cases the disease is called sporadic ALS. In the other 10% a hereditary pattern has been found; familial ALS. In 1993 a mutation was found in the gene for superoxide dismutase 1 (SOD1) which causes ALS in some familial ALS families. By now more than 110 different mutations in the SOD1-gene have been linked to familial ALS and more recently mutations in 5 other genes have been found to cause familial ALS. The discovery of SOD1-mutations has enabled the production of transgenic mutant-SOD1 expressing mice that develop an ALS-like motoneuron disease. These SOD1-mutant mice develop a disease strongly resembling human ALS. These transgenic mice offer the possibility to study all stages of motoneuron death. In this thesis different aspects of ALS in the transgenic mouse model and in cultured motoneurons are studied and discussed.
    Stroke 01/2005; · 6.02 Impact Factor