CD34 and CD43 Inhibit Mast Cell Adhesion and Are Required for Optimal Mast Cell Reconstitution

The Biomedical Research Centre, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada.
Immunity (Impact Factor: 19.75). 02/2005; 22(1):43-57. DOI: 10.1016/j.immuni.2004.11.014
Source: PubMed

ABSTRACT CD34 is a cell-surface sialomucin expressed by hematopoietic stem cells (HSC), mast cells, and vascular endothelia. Despite its popularity as an HSC marker, the function of CD34 on hematopoietic cells remains enigmatic. Here, we have addressed this issue by examining the behavior of mutant mast cells lacking CD34, the related sialomucin, CD43, or both molecules. Loss of these molecules leads to a gene-dose-dependent increase in mast cell homotypic aggregation with CD34/CD43KOs > CD43KO > CD34KO > wild-type. Importantly, reexpression of CD34 or CD43 in these cells caused reversal of this phenotype. Furthermore, we find that loss of these sialomucins prevents mast cell repopulation and hematopoietic precursor reconstitution in vivo. Our data provide clear-cut evidence for a hematopoietic function for CD34 and suggest that it acts as a negative regulator of cell adhesion.

Download full-text


Available from: Kelly M Mcnagny, Dec 13, 2013
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: CD34 is a highly glycosylated sialomucin expressed on a variety of cells, ranging from vascular endothelial cells to haematopoietic stem cells. Depending on its glycosylation state, CD34 has been shown to promote or inhibit cell adhesion and migration; however, a functional role for CD34 in the gut has not been determined. Using a model of Salmonella-induced gastroenteritis, we investigated the role of CD34 in the context of infection. Upon oral infection, the number of CD34+ cells detected in the submucosa, vascular endothelium and lamina propria significantly increased in S. Typhimurium-infected C57Bl/6 mice. The pathology of S. Typhimurium-infected C57Bl/6 mice was characterized by recruitment of neutrophils to the site of inflammation, submucosal oedema and crypt destruction. In contrast, Cd34(-/-) mice showed a delayed pathology, a defect in inflammatory cell migration into the intestinal tissue and enhanced survival. Importantly, this was not due to a lack of chemotactic signals in Cd34(-/-) mice as these mice had either similar or significantly higher levels of pro-inflammatory cytokines and chemokines post infection when compared with infected C57/Bl6 control mice. In summary, we demonstrate a novel role for CD34 in enhancing migration of inflammatory cells and thereby exacerbating host-mediated immunopathology in the intestine of S. Typhimurium-infected mice.
    Cellular Microbiology 05/2010; 12(11):1562-75. DOI:10.1111/j.1462-5822.2010.01488.x · 4.82 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: For almost 30 years, the cell-surface protein CD34 has been widely used as a marker to assist in the identification and Summary isolation of hematopoietic stem cells (HSCs) and progenitors in preparation for bone-marrow transplantation. In addition, it has increasingly been used as a marker to help identify other tissue-specific stem cells, including muscle satellite cells and epidermal precursors. Despite its utility as a stem-cell marker, however, the function of CD34 has remained remarkably elusive. This is probably because: (1) it is subject to a range of tissue-specific post-transcriptional and post-translational modifications that are expected to alter its function dramatically; (2) the simple interpretation of CD34 gain- and loss-of-function experiments has been confounded by the overlapping expression of the two recently discovered CD34-related proteins podocalyxin and endoglycan; and (3) there has been a glaring lack of robust in vitro and in vivo functional assays that permit the structural and functional analysis of CD34 and its relatives. Here, we provide a brief review of the domain structure, genomic organization, and tissue distribution of the CD34 family. We also describe recent insights from gain- and loss-of-function experiments and improved assays, which are elucidating a fascinating role for these molecules in cell morphogenesis and migration.
    Journal of Cell Science 12/2008; 121(Pt 22):3683-92. DOI:10.1242/jcs.037507 · 5.33 Impact Factor
  • Source